Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T22:03:55.225Z Has data issue: false hasContentIssue false

OSL dating of an inland dune along the lower River Scheldt near Aard (East Flanders, Belgium)

Published online by Cambridge University Press:  24 March 2014

F. Bogemans*
Affiliation:
Flemish Heritage Institute(VIOE), Koning Albert II-laan 19 bus 5, 1210 Brussel, Belgium. Present address: Belgian Geological Survey, Jennerstraat 13, 1000 Brussel
D. Vandenberghe*
Affiliation:
Laboratory of Mineralogy and Petrology (Luminescence Research Group), Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chronostratigraphic position of aeolian dunes in East Flanders (Belgium) has been under debate for decades. Until now, the only available age information consisted of a limited number of radiocarbon dates, which provided indirect sediment deposition chronologies. This paper reports on the first direct determination, by quartz-based single-aliquot optically stimulated luminescence dating, of the time that dune sands were deposited along the Lower River Scheldt in Belgium. The sediments are dated at 12.0±0.9 ka (n = 5), which confirms that the time of inland dune formation in East Flanders dates from the Younger Dryas period and should not be constrained to the Holocene.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

References

Adamiec, G. & Aitken, M.J., 1998. Dose-rate conversion factors: update. Ancient TL 16: 3750.Google Scholar
Aitken, M.J. & Alldred, M.J., 1976. The assessment of error limits in thermoluminescence dating. Archaeometry 14: 257267.CrossRefGoogle Scholar
Aitken, M.J., 1976. Thermoluminescence age evaluation and assessment of error limits: revised system. Archaeometry 18: 233238.Google Scholar
Aitken, M.J., 1998. An introduction to optical dating: the dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford science publications (Oxford), 267 pp.CrossRefGoogle Scholar
Ameryckx, J. & Leys, R., 1960. Verklarende tekst bij het kaartblad Wetteren 56W. Centrum voor Bodemkartering, Gent, 77 pp.Google Scholar
Bateman, M.D. & Van Huissteden, J., 1999. The timing of late-glacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14: 277283.3.0.CO;2-W>CrossRefGoogle Scholar
Bogemans, F., 1993. Quaternary geological mapping on basis of sedimentary properties in the eastern branch of the Flemish valley. Memoirs of the geological survey of Belgium 35, 49 pp.Google Scholar
Bogemans, F., Jacops, J., Meylemans, E., Perdaen, Y., Storme, A. & Verdurmen, I., 2008. Paeolandschappelijk, archeologisch en cultuurhistorisch onderzoek in het kader van het geactualiseerde Sigmaplan sigma-cluster Kalkense Meersen, zone Wijmeersen 2. Deel 2: bundeling rapportages deelonderzoeken. Internal report, Vlaams Instituut voor het Onroerend Erfgoed (Brussel), 179 pp.Google Scholar
Bogemans, F., Jacops, J., Meylemans, E., Perdaen, Y., Storme, A. & Verdurmen, I., 2009a. Paleolandschappelijk, archeologisch en cultuurhistorisch onderzoek in het kader van het geactualiseerde Sigmaplan, Sigma-cluster Kalkense Meersen, zone Wijmeersen 1. Internal report, Vlaams Instituut voor het Onroerend Erfgoed (Brussel), 55 pp.Google Scholar
Bogemans, F., Jacops, J., Meylemans, E., Perdaen, Y., Storme, A. & Verdurmen, I., 2009b. Paleolandschappelijk, archeologisch en cultuurhistorisch onderzoek in het kader van het geactualiseerde Sigmaplan, Sigma-cluster Kalkense Meersen, zone Bergenmeersen en Paardenweide. Internal report, Vlaams Instituut voor het Onroerend Erfgoed (Brussel), 120 pp.Google Scholar
Bohncke, S., Vandenberghe, J. & Huijzer, A.S., 1993. Periglacial environments during the Weichselian Late Glacial in the Maas valley, the Netherlands. Geologie en Mijnbouw 72: 193210.Google Scholar
Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T. & Murray, A.S., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37: 535541.CrossRefGoogle Scholar
Buylaert, J.-P., Ghysels, G., Murray, A.S., Thomsen, K.J., Vandenberghe, D., De Corte, F., Heyse, I. & Van den haute, P., 2009. Optical dating of relict sand wedges and composite wedge-pseudomorphs in Flanders, Belgium. Boreas 38: 160175.CrossRefGoogle Scholar
De Corte, F., Vandenberghe, D., De Wispelaere, A., Buylaert, J.-P. & Van den haute, P., 2006. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating. Czechoslovak Journal of Physics 56: D183D194.CrossRefGoogle Scholar
De Coster, R., 1982. Evolutie van de oude Scheldemeander te Berlare. De Aardrijkskunde 4: 317332.Google Scholar
De Moor, G., 1981. Periglacial deposits and sedimentary structures in the upper Pleistocene infilling of the Flemish Valley (NW Belgium). Biuletyn Peryglacjalny 28: 277291.Google Scholar
De Moor, G. & Heyse, I., 1974. Lithostratigrafie van de kwartaire afzettingen in de overgangszone tussen de kustvlakte en de Vlaamse Vallei van Noordwest België. Natuurwetenschappelijk tijdschrift 56: 85109.Google Scholar
De Moor, G. & Heyse, I., 1978. De morfologische evolutie van de Vlaamse Vallei, De Aardrijkskunde 4: 343375.Google Scholar
De Ploey, J., 1977. Some experimental data on slopewash and wind action with reference to quaternary morphogenesis in Belgium. Earth Surface Processes 2: 101115.Google Scholar
De Smedt, P., 1973. Paleogeografie en Kwartair-geologie van het confluentiegebied Dijle-Demer. Acta Geographica Lovaniensia 11: 141pp.Google Scholar
Derese, C., Vandenberghe, D., Paulissen, D. & Van den haute, P., 2009. Revisiting a type locality for Late Glacial aeolian sand deposition in NW Europe: Optical dating of the dune complex at Opgrimbie (NE Belgium). Geomorphology 109: 2735.Google Scholar
Derese, C., Vandenberghe, D., Eggermont, N., Bastiaens, J., Annaert, R. & Van den haute, P., 2010. A medieval settlement caught in the sand: optical dating of sand-drifting at Pulle (N Belgium). Quaternary Geochronology 5: 336341.Google Scholar
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37: 161165.Google Scholar
Gullentops, F., 1957. L'évolution du relief depuis la dernière glaciation. Tijdschrift Belgische vereniging Aardrijkskundige Studies, XXVI: 7187.Google Scholar
Heyse, I., 1984. Geomorphologische typekartering van de Vlaamse Vallei. Nationaal Centrum voor Geomorphologisch Onderzoek, Werkstukken XXIV: 123132.Google Scholar
Heyse, I. & De Moor, G., 1979. Fysische aspecten van Binnen-Vlaanderen. Verslag van de excursie van 26 oktober 1977. De Aardrijkskunde: 2549.Google Scholar
Hoek, W.Z., 2001. Vegetation response to the ~14.7 and ~11.5 ka cal BP climate transitions: is vegetation lagging climate? Global and Planetary Change 30: 103115.Google Scholar
Huijzer, B. & Vandenberghe, J., 1998. Climatic reconstruction of the Weichselien Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391417.Google Scholar
Huissteden, J., Schwan, J.C.G. & Bateman, M.D., 2001. Environmental conditions and paleowind directions at the end of the Weichselian Late Pleniglacial recorded in aeolian sediments and geomorphology (Twente, Eastern Netherlands). Geologie en Mijnbouw / Netherlands Journal of Geosciences 80: 118.Google Scholar
Isarin, R.F.B., Renssen, H. & Koster, E.A., 1997. Surface wind climate during the Younger Dryas in Europe as inferred from aeolian records and model simulations. Palaeogeography, Palaeoclimatology, Palaeoecology 143: 127148.Google Scholar
Isarin, R.F.B. & Renssen, H., 1999. Reconstructing and modelling Late Weichselian climates: the Younger Dryas in Europe as a case study. Earth Science Reviews 48: 138.CrossRefGoogle Scholar
Jacobs, P., 1974. Kwartairgeologie van de streek tussen Destelbergen en Kalken (België, provincie Oost-Vlaanderen. Mededelingen Werkgroep Tertiaire en Kwartaire Geologie 11: 323.Google Scholar
Kasse, C., 1995. Younger Dryas cooling and fluvial response (Maas River, the Netherlands). Geologie en Mijnbouw 74: 251256.Google Scholar
Kasse, C., 1999. Late Pleniglacial and Lateglacial aeolian phases in the Netherlands. In: Schirmer, W. (ed): Dunes and fossil soils. GeoArchaeoRhein 3: 6182.Google Scholar
Kasse, C., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26: 507532.CrossRefGoogle Scholar
Kasse, C., Vandenberghe, D., De Corte, F. & Van den haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22: 695708.CrossRefGoogle Scholar
Kiden, P. & Verbruggen, C., 2001. Het verhaal van een rivier: de evolutie van de Schelde na de laatste ijstijd. In: Bourgeois, J., Crombé, Ph., De Mulder, G. & Rogge, M. (eds): Een duik in het verleden Schelde, Maas en Rijn in de pre- en protohistorie, Publicaties van het PAMZOV-site Velzeke Gewone reeks nr. 4 (Zottegem): 1135.Google Scholar
Koster, E.A., 1988. Ancient and modern cold-climate aeolian sand deposition: a review. Journal of Quaternary science 3: 6983.CrossRefGoogle Scholar
Koster, E.A., 2005. Recent advances in luminescence dating of Late-Pleistocene (cold-climate) aeolian sand and loess deposits in Western Europe. Permafrost and Periglacial Processes 16: 131143.Google Scholar
Lancaster, N., 1995. Geomorphology of desert dunes. Routledge (London), 320 pp.Google Scholar
Mejdahl, V., 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21: 6172.CrossRefGoogle Scholar
Murray, A.S. & Wintle, A.G., 2000. Luminescence dating using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.Google Scholar
Murray, A.S. & Olley, J.M., 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 116.Google Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37: 377381.Google Scholar
Nickling, W.G., 1994. Aeolian sediment transport and deposition. In: Pye, K. (ed.): Sediment transport and depositional processes. Blackwell Scientific Publications (Oxford): 293350.Google Scholar
Paepe, R. & Vanhoorne, R., 1967. The stratigraphy and palaeobotany of the Late Pleistocene in Belgium. Memoirs of the Geological Survey of Belgium 8, 96 pp.Google Scholar
Peeters, L., 1943. Les dunes continentales de la Belgique. Bulletin de la Société belge de Géologie, Paléontologie, Hydrologie 52: 5161.Google Scholar
Prescott, J.R. & Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23: 497500.Google Scholar
Pye, K. & Tsoar, H., 1990. Aeolian sand and sand dunes. Springer Verlag (Berlin), 458 pp.Google Scholar
Pye, K., 1993. Late Quaternary development of coastal parabolic megadune complexes on northeastern Australia. In: Pye, K. & Lancaster, N. (eds) Aeolian Sediments. Ancient and modern. Blackwell Scientific Publications (Oxford): 2344.Google Scholar
Schwan, J., 1986. The origin of horizontal alternating bedding in Weichselian aeolian sands in Northwestern Europe. Sedimentary Geology 49: 73108.Google Scholar
Schwan, J., 1988. The structure and genesis of Weichselian tot Early Holocene aeolian sand sheets in Western Europe. Sedimentary Geology 55: 197232.Google Scholar
Snacken, F., 1961. Streekindeling en begrenzing van het Land van Waas. Belgische Vereniging voor Aardrijkskundige Studies 30: 217256.Google Scholar
Tavernier, R., 1954. Le Quaternaire in Prodrome d'une description Géologique de la Belgique (Liège): 565589.Google Scholar
Teunissen, D., 1983. The development of the landscape of the nature reserve De Hamert and its environs in the Northern part of the province of Limburg, the Netherlands. Geologie & Mijnbouw 62: 569576.Google Scholar
Vandenberghe, J., 1977. Geomorfologie van de Zuiderkempen. Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van België 149, 166 pp.Google Scholar
Vandenberghe, J., 1998. Climatic reconstruction of the Weichselien Pleniglacial in northwestern and central Europe. Journal of Quaternary Science 13: 391417.Google Scholar
Vandenberghe, J., Bohncke, S. & Verbruggen, M., 1991. Interactions between the Late Glacial fluvial and aeolian processes and environments in Dutch Lowland Basins. Aardrijkskundige Mededelingen 6: 195201.Google Scholar
Vandenberghe, D., 2004. Investigation of the optically stimulated luminescence dating method for application to young geological sediments. Unpublished PhD. thesis, Universiteit Gent: 358 pp.Google Scholar
Vandenberghe, D., Kasse, C., Hossain, S.M., De Corte, F., Van den haute, P., Fuchs, M. & Murray, A.S., 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the S Netherlands. Journal of Quaternary Science 19: 7386.Google Scholar
Vandenberghe, D., De Corte, F., Buylaert, J.-P., Kucera, J. & Van den haute, P., 2008. On the internal radioactivity in quartz. Radiation Measurements 43: 771775.Google Scholar
Vandenberghe, D., Vanneste, K., Verbeeck, K., Paulissen, E., Buylaert, J.-P., De Corte, F. & Van den haute, P., 2009. Late Weichselian and Holocene earthquake events along the Geleen fault in NE Belgium: OSL age constraints. Quaternary International 199: 5674.Google Scholar
Van Mourik, J.M., Nierop, K.G.J. & Vandenberghe, D.A.G., 2010. Radiocarbon and optically stimulated luminescence dating based chronology of a polycyclic sequence at Weerterbergen (SE Netherlands). Catena 80: 170181.Google Scholar
Verbruggen, C., 1971. Postglaciale landschapsgeschiedenis van Zandig Vlaanderen. Onuitgegeven doctoraatsverhandeling, UGent, 440pp.Google Scholar
Verbruggen, C. & Van Dongen, W., 1976. De geokronologie van het Postpleniglaciaal in Zandig-Vlaanderen op basis van pollenanalyse en 14C-onderzoek. Natuurwetenschappelijk Tijdschrift 58: 233256.Google Scholar
Verbruggen, C., Denys, L. & Kiden, P., 1991: Paleo-ecologische en geomorfologische evolutie van Laag- en Midden-België tijdens het Laat-Kwartair. De Aardrijkskunde 3: 357376.Google Scholar
Verbruggen, C., Denys, L. & Kiden, P., 1996. Belgium. In: Berglund, E.D., Birks, H.J.B., Ralska-Jasiewiczowa, M. & Wright, H.E. (eds): Palaeoecological events during the last 15000 years: Regional Syntheses of Palaeoecological studies of lakes and mires in Europe, (Chichester): 553574.Google Scholar
Wallinga, J., Davids, F. & Dijkmans, J.W.A., 2007. Luminescence dating of Netherlands' sediments. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86: 179196.CrossRefGoogle Scholar
Wintle, A.G. & Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 291369.Google Scholar
Zagwijn, W.H. & Paepe, R., 1968. Die Stratigraphie der Weichselzeitlichen Ablagerungen der Niederlande und Belgiens. Eiszeitalter und Gegenwart 19: 129146.Google Scholar