Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T22:50:04.521Z Has data issue: false hasContentIssue false

Mid-Holocene water-level changes in the lower Rhine-Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution

Published online by Cambridge University Press:  24 March 2014

O. van de Plassche
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
B. Makaske*
Affiliation:
Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
W.Z. Hoek
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands
M. Konert
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
J. van der Plicht
Affiliation:
Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; also at: Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA Leiden, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a revised relative mean sea-level (MSL) curve for the Rhine-Meuse delta, western Netherlands, for the period 7900-5300 cal yr BP. The revision is based on a series of new and previously unpublished local groundwater-level index data from buried Late Glacial aeolian dunes in the lower Rhine-Meuse delta, and reinterpretation of existing data.

The new index data consist of (AMS and conventional) radiocarbon dates of samples, collected from the base of peat formed on dune slopes, near Vlaardingen (21 index points), Hillegersberg (one index point), and Hardinxveld-Giessendam (10 index points). The Vlaardingen data represent the coast-nearest Rhine-Meuse delta local water-level record, which therefore is highly indicative for sea-level change. Pollen and macrofossil analysis, and dating of paired samples was carried out to assess the reliability of the groundwater-level index data.

The revision of the MSL curve involves: (1) a significant (0 to >1 m) upward adjustment for the period 7900-7300 cal yr BP; (2) a downward adjustment of <0.25 m for the period 6650-5300 cal yr BP. The new data indirectly support the reliability of the part of the curve for the period 7300-6650 cal yr BP. A longitudinally fairly uniform river gradient of 2.5-3.0 cm/km in the lower Rhine-Meuse delta during the period 6650-5600 cal yr BP can be inferred from the data sets. A significant river gradient extended further towards the coastline than previously thought and it may be that also the revised MSL curve reflects river-gradient effects. An increased floodbasin effect (stronger intra-coastal tidal damping) seems to have developed in the lower Rhine-Meuse delta in de period 7500-6600 cal yr BP, and was probably a complex response to a major avulsion of the Rhine.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2010

Footnotes

Orson van de Plassche passed away on May 4, 2009.

References

Beets, D.J., Van der Valk, L. & Stive, M.J.F., 1992. Holocene evolution of the coast of Holland. Marine Geology 103: 423443.Google Scholar
Behre, K.-E., Menke, B. & Streif, H., 1979. The Quaternary geological development of the German part of the North Sea. In: Oele, E., Schüttenhelm, R.T.E. & Wiggers, A.J. (eds): The Quaternary history of the North Sea – Acta Univ. Uppsala Symp. Univ. Upps. Ann. Quingent. Celebr. 2: 85113.Google Scholar
Berendsen, H.J.A., Makaske, B., Van de Plassche, O., Van Ree, M.H.M., Das, S., Van Dongen, M., Ploumen, S. & Schoenmakers, W., 2007. New groundwater-level rise data from the Rhine-Meuse delta; implications for the reconstruction of Holocene relative mean sea-level rise and differential land-level movements. Netherlands Journal of Geosciences/Geologie en Mijnbouw 86: 333354.CrossRefGoogle Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism, Late-Glacial - Holocene tectonics in the Rhine-Meuse delta, The Netherlands. Netherlands Geographical Studies 316, Koninklijk Nederlands Aardrijkskundig Genootschap / Faculteit Ruimtelijke Wetenschappen, Universiteit Utrecht (Utrecht): 176 pp.Google Scholar
Cohen, K.M., 2005. 3D geostatistical interpolation and geological interpretation of paleo-groundwater rise in the Holocene coastal prism in the Netherlands. In: Giosan, L. & Bhattacharaya, J.P. (eds): River deltas; concepts, models, and examples. SEPM Special Publication 83: 341364.CrossRefGoogle Scholar
Delft Soil Mechanics Laboratory, 1979. Funderingsonderzoek Oostwijk te Vlaardingen. Unpubl. Report CO-248570, Ir. Hannink.Google Scholar
Faegri, K. & Iversen, J., 1989. Textbook of pollen analysis. Wiley (New York): 328 pp.Google Scholar
Flemming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K. & Chappell, J., 1998. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163: 327342.Google Scholar
Hijma, M.P., 2009. From river valley to estuary; the early-mid Holocene transgression of the Rhine-Meuse valley, The Netherlands. Netherlands Geographical Studies 389, Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Geowetenschappen, Universiteit Utrecht (Utrecht): 192 pp.Google Scholar
Hijma, M.P. & Cohen, K.M., 2010. Timing and magnitude of the sea-level jump preluding the 8200 yr event. Geology 38: 275278.Google Scholar
Hijma, M.P., Cohen, K.M., Hoffmann, G., Van der Spek, A.J.F. & Stouthamer, E., 2009. From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta). Netherlands Journal of Geosciences/Geologie en Mijnbouw 88: 1353.Google Scholar
Jelgersma, S., 1961. Holocene sea-level changes in the Netherlands. Mededelingen van de Geologische Stichting, Serie C 6 (7): 1100.Google Scholar
Kiden, P., Denys, L. & Johnston, P., 2002. Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea coast: geological data and model results. Journal of Quaternary Science 17 (5–6): 535546.Google Scholar
Louwe Kooijmans, L.P., 1974. The Rhine/Meuse delta; four studies on its prehistoric occupation and Holocene geology. Analecta Praehistorica Leidensia 7: 1421.Google Scholar
Louwe Kooijmans, L.P. (ed.), 2001a. Hardinxveld-Giessendam Polderweg; een mesolithisch jachtkamp in het rivierengebied (5500-5000 v. Chr.). Rapportage Archeologische Monumentenzorg 83, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort): 488 pp.Google Scholar
Louwe Kooijmans, L.P. (ed.), 2001b. Hardinxveld-Giessendam De Bruin; een kampplaats uit het Laat-Mesolithicum en het begin van de Swifterband-cultuur. Rapportage Archeologische Monumentenzorg 88, Rijksdienst voor het Oudheidkundig Bodemonderzoek (Amersfoort): 550 pp.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hadjas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J. & Weyhenmeyer, C.E., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51: 11111150.Google Scholar
Streif, H., 1971. Stratigraphie und Faziesentwicklung im Küstengebiet von Woltzeten in Ostfriesland. Beihefte Geologisches Jahrbuch 119: 58 pp.Google Scholar
Streif, H., 1972. The results of stratigraphical and facial investigations in the coastal Holocene of Woltzeten/Ostfriesland, Germany. Geologiska Föreningen i Stockholm Förhandlingar 94: 281299.Google Scholar
Stuiver, M. & Van der Plicht, J. (eds), 1998. INTCAL98: Calibration Issue. Radiocarbon 40 (3): 10411081.Google Scholar
Törnqvist, T.E., De Jong, A.F.M., Oosterbaan, W.A. & Van der Borg, K., 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34: 566577.CrossRefGoogle Scholar
Törnqvist, T.E., Van Ree, M.H.M., Van't Veer, R. & Van Geel, B., 1998. Improving methodology for high-resolution reconstruction of sea-level rise and neotectonics by paleoecological analysis and AMS 14C dating of basal peats. Quaternary Research 49: 7285.Google Scholar
Van de Plassche, O., 1979. Reducing the effect of root contamination of peat samples. Oceanis 5 (Fascicule hors-série): 215218.Google Scholar
Van de Plassche, O., 1980a. Holocene water-level changes in the Rhine-Meuse delta as a function of changes in relative sea-level, local tidal range, and river gradient. Geologie en Mijnbouw 59: 343351.Google Scholar
Van de Plassche, O., 1980b. Compaction and other sources of error in obtaining sea-level data: some results and consequences. Eiszeitalter und Gegenwart 30: 171181.Google Scholar
Van de Plassche, O., 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36: 193.Google Scholar
Van de Plassche, O., 1984. Causes of Late-Atlantic swamp-forest submergence in the central Rhine/Meuse delta. In: Mörner, N.-A. & Karlén, W. (eds): Climatic changes on a yearly to millennial basis. Reidel (Dordrecht): 205214.CrossRefGoogle Scholar
Van de Plassche, O. (ed), 1986. Sea-level research: a manual for the collection and evaluation of data. Geobooks (Norwich): 618 pp.Google Scholar
Van de Plassche, O., 1995a. Periodic clay deposition in a fringing peat swamp in the lower Rhine-Meuse river area, 5400-3400 cal BC. In: Finkl, C.W. Jnr. (ed.): Holocene cycles: climate, sea levels and sedimentation. Journal of Coastal Research Special Issue 17: 95102.Google Scholar
Van de Plassche, O., 1995b. Evolution of the intra-coastal tidal range in the Rhine-Meuse delta and the Flevo Lagoon, 5700-3000 yrs cal. B.C. Marine Geology 124: 113128.CrossRefGoogle Scholar
Van de Plassche, O. & Roep, Th., 1989. Sea-level changes in the Netherlands during the last 6500 years: basal peat vs. coastal barrier data. In: Scott, D.B., Pirazolli, P.A. & Honig, C.A. (eds): Late Quaternary sea-level correlation and applications. Kluwer (Dordrecht): 4156.CrossRefGoogle Scholar
Van de Plassche, O., Bohncke, S.J.P., Makaske, B. & Van der Plicht, J., 2005. Water-level changes in the Flevo area, central Netherlands (5300-1500 BC): implications for relative mean sea-level rise in the western Netherlands. Quaternary International 133–134: 7793.Google Scholar
Van der Molen, J. & De Swart, H.E., 2001. Holocene tidal conditions and tide-induced sand transport in the southern North Sea. Journal of Geophysical Research 106 (C5): 93399362 CrossRefGoogle Scholar
Van der Plicht, J., 1993. The Groningen radiocarbon calibration program. Radiocarbon 35: 231237.Google Scholar
Van der Woude, J.D., 1983. Holocene paleoenvironmental evolution of a perimarine fluviatile area; geology and paleobotany of the area surrounding the archeological excavation at the Hazendonk river dune (Western Netherlands). Analecta Praehistorica Leidensia 16: 1124.Google Scholar
Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W., 1991. Holocene water level development in the Netherlands' river area; implications for sea-level reconstruction. Geologie en Mijnbouw 70: 311326.Google Scholar
Van Geel, B., 2001. Non-pollen palynomorphs. In: Smol, J.P., Birks, H.J.B. & Last, W.M. (eds), Developments in paleoenvironmental research; tracking environmental change using lake sediments volume 3: terrestrial, algal, and siliceous indicators. Kluwer (Dordrecht): 99119.Google Scholar
Van Geel, B., Coope, G.R. & Van der Hammen, Th., 1989. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (the Netherlands). Review of Palaeobotany and Palynology 60: 25129.Google Scholar
Van Veen, J., 1950. Eb- en vloedschaarsystemen in de Nederlandse getijwateren. Tijdschrift Koninklijk Nederlands Aardrijkskundig Genootschap, Tweede reeks 67: 303325.Google Scholar
Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G., 2007. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews 26: 32493275.Google Scholar
Yu, S.-Y., Berglund, B.E., Sandgren, P. & Lambeck, K., 2007. Evidence for a rapid sea level rise 7600 yr ago. Geology 35: 891894.Google Scholar