Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T18:47:32.016Z Has data issue: false hasContentIssue false

Topological types of Pfaffian manifolds

Published online by Cambridge University Press:  22 January 2016

Masato Fujita
Affiliation:
Department of Mathematics, Graduate School of Science, Kyoto University, Sakyou Kyoto, 606-8502, Japan, fujita@kusm.kyoto-u.ac.jp
Masahiro Shiota
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa Nagoya, 464-8601, Japan, shiota@math.nagoya-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Ω = (ω1,…,ωn-k) be differential 1-forms with polynomial coefficients in Rn. A Pfaffian manifold of Ω is by definition a maximal integral k-manifold of Ω. It is shown that the number of homeomorphism classes of all Pfaffian manifolds of Rolle Type of Ω is finite and, moreover, bounded by a computable function in variables n, k and the degree of ω1,…, ωn-k. Finiteness is proved also in any o-minimal structure.

We give also an example of a semi-algebraic C1 differential form on a semi-algebraic C2 3-manifold whose Pfaffian manifolds have homeomorphism classes of the cardinality of continuum. Hence the cardinality of all manifolds is the continuum (not countable).

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2004

References

[1] Basu, S., Pollack, R. and Roy, M.-F., On the combinatorial and algebraic complexity of quantifier elimination, Journal of ACM, 43 (1996), no. 6, 10021045.Google Scholar
[2] Chazal, F., Sur les feuilletages algébriques de Rolle, Comment. Math. Helv., 72 (1997), 411425.Google Scholar
[3] Chazal, F., Strcture locale et globale des feuilletage de Rolle, un théorème de fibration, Ann. Inst. Fourier, 48 (1998), no. 2, 553592.Google Scholar
[4] Collins, G. E., Quantifier elimination for real closed fields by cylinderical algebraic decomposition, Springer Lecture Notes in Computer Science 33, pp. 515532.Google Scholar
[5] Haefliger, A., Structures feuilletées et cohomologie á valeurs dans un faisceau de groupöide, Comment. Math. Helv., 32 (1958), 248329.CrossRefGoogle Scholar
[6] Khovanskii, A., On a class of systems of trancendental equations, Soviet Math. Dokl., 22 (1980), no. 3, 762765.Google Scholar
[7] Lion, J.-M., Etude des hypersurfaces Pfaffiennes de Rolle, PhD thesis, Université de Bourgogne (1991).Google Scholar
[8] Lion, J.-M. and Rolin, J.-P., Volumes, feuilles de Rolle et feuilletages analytiques réeles et théorème de Wilkie, Ann. Toulouse, 7 (1998), 93112.Google Scholar
[9] Lion, J.-M. and Speissegger, P., Analytic strafication in the pfaffian closure of an o-minimal structure, Duke Math. J., 103 (2000), no. 2, 215231.Google Scholar
[10] Moussu, R. and Roche, C., Théorie de Khovanskii et problème de Dulac, Invent. Math., 105 (1991), 431441.Google Scholar
[11] Moussu, R. and Roche, C., Théorème de finitude uniformes pour les variétés pfaffiennes de Rolle, Ann. Inst. Fourier, 42 (1992), 393420.CrossRefGoogle Scholar
[12] Shiota, M., Nash manifolds, Lecture Notes in Mathematics 1269, Springer-Verlag, 1980.Google Scholar
[13] Shiota, M., Geometry of subanalytic and semialgebraic sets, Birkhäuser, 1997.Google Scholar
[14] Speissegger, P., The Pfaffian closure of an o-minimal structure, J. reine angew. Math., 508 (1999), 189221.Google Scholar
[15] Dries, L. van den, Tame topology and O-minimal structure, London Math. Soc. Lecture Note 248, Cambridge Univ. Press, 1998.Google Scholar
[16] Dries, L. van den and Miller, C., Geometric categories and o-minimal structures, Duke Math. J., 84 (1996), 497540.Google Scholar
[17] Wilkie, A. J., Model completeness results for expansions of the ordered field of real numbers by restricted pfaffian functions and the exponential function, J. Amer. Math. Soc., 9 (1996), 10511094.Google Scholar