Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T20:52:57.841Z Has data issue: false hasContentIssue false

A REALIZATION OF THE ENVELOPING SUPERALGEBRA $ {\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$

Published online by Cambridge University Press:  09 September 2021

JIE DU
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia j.du@unsw.edu.au
QIANG FU*
Affiliation:
School of Mathematical Sciences, Tongji University, Shanghai, 200092, China q.fu@hotmail.com, q.fu@tongji.edu.cn
YANAN LIN
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China ynlin@xmu.edu.cn
*
Corresponding author.

Abstract

In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum $\mathfrak {gl}_n$ via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ of the loop algebra $\widehat {\mathfrak {gl}}_{m|n}$ of ${\mathfrak {gl}}_{m|n}$ with those of affine symmetric groups ${\widehat {{\mathfrak S}}_{r}}$ . Then, we give a BLM type realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ via affine Schur superalgebras.

The first application of the realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ is to determine the action of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ on tensor spaces of the natural representation of $\widehat {\mathfrak {gl}}_{m|n}$ . These results in epimorphisms from $\;{\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ to affine Schur superalgebras so that the bridging relation between representations of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ and ${\widehat {{\mathfrak S}}_{r}}$ is established. As a second application, we construct a Kostant type $\mathbb Z$ -form for ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.

Type
Article
Copyright
© (2021) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by the National Natural Science Foundation of China (11671297, 11871404)

References

[1] Bao, H., Kujawa, J., Li, Y., and Wang, W., Geometric Schur duality of classical type , Transform. Groups 23 (2018), 329389.Google Scholar
[2] Beilinson, A. A., Lusztig, G. and MacPherson, R., A geometric setting for the quantum deformation of $\;G{L}_n$ , Duke Math. J. 61 (1990), 655677.CrossRefGoogle Scholar
[3] Buchweitz, R. O., “Morita contexts, idempotents, and Hochschild cohomology–with applications to invariant rings” in Commutative algebra (Grenoble/Lyon, 2001), Contemp. Math. 331, Amer. Math. Soc., Providence, 2003, pp. 2553.Google Scholar
[4] Carter, R. and Lusztig, G., On the modular representations of the general linear and symmetric groups , Math. Zeit. 136 (1974), 193242.CrossRefGoogle Scholar
[5] de Concini, C. and Procesi, C., A characteristic free approach to invariant theory , Adv. Math. 21 (1976), 330354.Google Scholar
[6] Deng, B., Du, J. and Fu, Q., A Double Hall Algebra Approach to Affine Quantum Schur–Weyl Theory, London Mathematical Society Lecture Note Series, 401, Cambridge University Press, Cambridge, 2012.CrossRefGoogle Scholar
[7] Donkin, S., Invariants of several matrices , Invent. Math. 110 (1992), 389401.Google Scholar
[8] Du, J., A note on the quantized Weyl reciprocity at roots of unity , Alg. Colloq. 2 (1995), 363372.Google Scholar
[9] Du, J. and Fu, Q., Quantum affine $\;{\mathrm{gl}}_n$ via Hecke algebras , Adv. Math. 282 (2015) 2346.CrossRefGoogle Scholar
[10] Du, J. and Fu, Q., The integral quantum loop algebra of $\;{\mathrm{gl}}_n$ , Int. Math. Res. Not. IMRN (2019), 61796215.CrossRefGoogle Scholar
[11] Du, J. and Gu, H., A realisation of the quantum supergroup $\;\mathbf{U}({\mathrm{gl}}_{m\mid n})$ , J. Algebra 404 (2014), 6099.Google Scholar
[12] Du, J., Gu, H. and Zhou, Z., Multiplication formulas and semisimplicity for $q$ -Schur superalgebras , Nagoya Math. J. 237 (2020), 98126.CrossRefGoogle Scholar
[13] Du, J., Parshall, B. and Scott, L., Quantum Weyl reciprocity and tilting modules , Commun. Math. Phys. 195 (1998), 321352.CrossRefGoogle Scholar
[14] Du, J. and Rui, H., Quantum Schur superalgebras and Kazhdan-Lusztig combinatorics , J. Pure Appl. Algebra 215 (2011), 27152737.CrossRefGoogle Scholar
[15] Fan, Z., Lai, C., Li, Y., Luo, L., and Wang, W., Affine Flag Varieties and Quantum Symmetric Pairs , Memoir Amer. Math. Soc. 265 (2020), no. 1285, v+123pp.Google Scholar
[16] Fan, Z. and Li, Y., Geometric Schur–Weyl duality of classical type II , Trans. Amer. Math. Soc., Series B. 2 (2015), 5192.CrossRefGoogle Scholar
[17] Fu, Q., On Schur algebras and little Schur algebras , J. Algebra 322 (2009), 16371652.Google Scholar
[18] Fu, Q., Integral affine Schur–Weyl reciprocity , Adv. Math. 243 (2013), 121.CrossRefGoogle Scholar
[19] Fu, Q., On the hyperalgebra of the loop algebra $\;{\widehat{\mathrm{gl}}}_n$ , J. Algebra, 537 (2019), 245277.Google Scholar
[20] Ginzburg, V. and Vasserot, E., Langlands reciprocity for affine quantum groups of type ${A}_n$ , Int. Math. Res. Notices 1993, 6785.Google Scholar
[21] Green, J. A., Polynomial Representations of $\;\textit{GL}_n$ , 2nd ed., with an appendix on Schensted correspondence and Littelmann paths by Erdmann, K., Green, J. A. and Schocker, M., Lecture Notes in Mathematics, 830, Springer-Verlag, Berlin, 2007.Google Scholar
[22] Jimbo, M., A $\;q$ -analogue of $\;U\left(\mathrm{gl}\left(N+1\right)\right)$ , Hecke algebras, and the Yang–Baxter equation , Lett. Math. Phys. 11 (1986), 247252.CrossRefGoogle Scholar
[23] Lusztig, G., Aperiodicity in quantum affine $\;{\mathrm{gl}}_n$ , Asian J. Math. 3 (1999), 147177.Google Scholar
[24] Ross, L., Representations of graded Lie algebras , Trans. Amer. Math. Soc. 120 (1965) 1723.CrossRefGoogle Scholar
[25] Varagnolo, M. and Vasserot, E., On the decomposition matrices of the quantized Schur algebra , Duke Math. J. 100 (1999), 267297.CrossRefGoogle Scholar