Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T07:00:25.088Z Has data issue: false hasContentIssue false

On the class number and unit index of simplest quartic fields

Published online by Cambridge University Press:  22 January 2016

Andrew J. Lazarus*
Affiliation:
Department of Mathematics and Computer Science, University of California, Riverside, Riverside, CA 92521, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term “simplest” field has been used to describe certain totally real, cyclic number fields of degrees 2, 3, 4, 5, 6, and 8. For each of these degrees, the fields are defined by a one-parameter family of polynomials with constant term ±1. The regulator of these “simplest” fields is small in an asymptotic sense: in consequence, the class number of these fields tends to be large.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1991

References

[1] Morris, Abramowitz and Irene, A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964.Google Scholar
[2] Lyliane, Bouvier and Jean-Jacques, Payan, Modules sur certains anneaux de Dedekind, J. Reine Angew. Math., 274/275 (1975), 278286.Google Scholar
[3] Gary, Cornell and Lawrence, C. Washington, Class number of cyclotomic fields, J. Number Theory, 21(3) (1985), 260274.Google Scholar
[4] Dennis, A. Garbanati, Units with norm −1 and signatures of units, J. Reine Angew. Math., 283/284 (1976), 164175.Google Scholar
[5] Marie-Nicole, Gras, Table Numérique du Nombre de Classes et des Unités des Extensions Cycliques de Degré 4 de Q, Publ. math. fasc. 2, Fac. Sci. Besançon, 1977/1978.Google Scholar
[6] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fourth edition, 1975.Google Scholar
[7] Helmut, Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, In Mathematische Abhandlungen, pages 285379, Walter de Gruyter, Berlin, 1975, Originally published 1950.Google Scholar
[8] Helmut, Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.Google Scholar
[9] Loo, Keng Hua, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, revised English edition, 1982.Google Scholar
[10] Andrew, J. Lazarus, The Class Number and Cyclotomy of Simplest Quartic Fields, PhD thesis, University of California, Berkeley, 1989.Google Scholar
[11] Andrew, J. Lazarus, Class numbers of simplest quartic fields, In Mollin, R. A., editor, Number Theory, pages 313323, Walter de Gruyter, Berlin, New York, 1990.Google Scholar
[12] Andrew, J. Lazarus, Gaussian periods and units in certain cyclic fields, to appear in Proc. Amer. Math. Soc.Google Scholar
[13] Leopoldt, H. W., Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper, Abh. Deutsche Akad. Wiss. Berlin, 2 (1953), 148.Google Scholar
[14] Mollin, R. A. and Williams, Hugh C., On prime-valued polynomials and class numbers of real quadratic fields, Nagoya Math. J., 112 (1988), 143151.Google Scholar
[15] René, Schoof and Washington, Lawrence C., Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp., 50 (182) (1988), 543556.Google Scholar
[16] Daniel, Shanks, The simplest cubic fields, Math. Comp., 28 (128) (1974), 11371152.Google Scholar
[17] Stark, H. M., Some effective cases of the Brauer-Siegel theorem, Invent, math., 23 (1974),135152.Google Scholar