Published online by Cambridge University Press: 11 June 2020
Let $k$ be a field, and let ${\mathcal{C}}$ be a $k$-linear, Hom-finite triangulated category with split idempotents. In this paper, we show that under suitable circumstances, the Grothendieck group of ${\mathcal{C}}$, denoted by $K_{0}({\mathcal{C}})$, can be expressed as a quotient of the split Grothendieck group of a higher cluster tilting subcategory of ${\mathcal{C}}$. The results we prove are higher versions of results on Grothendieck groups of triangulated categories by Xiao and Zhu and by Palu. Assume that $n\geqslant 2$ is an integer; ${\mathcal{C}}$ has a Serre functor $\mathbb{S}$ and an $n$-cluster tilting subcategory ${\mathcal{T}}$ such that $\operatorname{Ind}{\mathcal{T}}$ is locally bounded. Then, for every indecomposable $M$ in ${\mathcal{T}}$, there is an Auslander–Reiten $(n+2)$-angle in ${\mathcal{T}}$ of the form $\mathbb{S}\unicode[STIX]{x1D6F4}^{-n}(M)\rightarrow T_{n-1}\rightarrow \cdots \rightarrow T_{0}\rightarrow M$ and