Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T22:07:43.024Z Has data issue: false hasContentIssue false

ANALYTIC SPREAD OF FILTRATIONS ON TWO-DIMENSIONAL NORMAL LOCAL RINGS

Published online by Cambridge University Press:  23 November 2022

STEVEN DALE CUTKOSKY*
Affiliation:
Department of Mathematics University of Missouri Columbia, Missouri 65211 USA cutkoskys@missouri.edu

Abstract

In this paper, we prove that a classical theorem by McAdam about the analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial filtrations on a two-dimensional normal excellent local ring R, and that the Hilbert polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which is the sum of a linear polynomial and a bounded function. We prove these theorems by first studying asymptotic properties of divisors on a resolution of singularities of the spectrum of R. The filtration of the symbolic powers of an ideal is an example of a divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant difference in the classical case of filtrations of powers of ideals and divisorial filtrations.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partially supported by National Science Foundation Grant No. 2054394.

References

Abhyankar, S., Resolution of Singularities of Embedded Algebraic Surfaces, 2nd ed., Springer, New York, Berlin, Heidelberg, 1998.CrossRefGoogle Scholar
Atiyah, M. F. and MacDonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.Google Scholar
Bauer, T., Caibar, M., and Kennedy, G., Zariski decomposition: A new (old) chapter of linear algebra , Amer. Math. Monthly 119 (2012), 2541.CrossRefGoogle Scholar
Bourbaki, N., Commutative Algebra, Chapters 1–7, Springer, Berlin, 1989.Google Scholar
Bruns, W. and Herzog, J., Cohen Macaulay Rings, Revised Edition, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Reading, Massachusetts, 1993.Google Scholar
Burch, L., Codimension and analytic spread , Proc. Cambridge Philos. Soc. 72 (1972), 369373.CrossRefGoogle Scholar
Cossart, V., Jannsen, U., and Saito, S., Desingularization: Invariants and Strategy, Lecture Notes in Math. 2270, Springer, Cham, 2020.CrossRefGoogle Scholar
Cutkosky, S. D., Zariski decomposition of divisors on algebraic varieties , Duke Math. J. 53 (1986), 149156.CrossRefGoogle Scholar
Cutkosky, S. D., On unique and almost unique factorization of complete ideals II , Invent. Math. 98 (1989), 5974.CrossRefGoogle Scholar
Cutkosky, S. D., Introduction to Algebraic Geometry, Amer. Math. Soc., Providence, Rhode Island, 2018.CrossRefGoogle Scholar
Cutkosky, S. D., Examples of multiplicities and mixed multiplicities of filtrations , Contemp. Math. 773 (2021), 1934.CrossRefGoogle Scholar
Cutkosky, S. D. and Sarkar, P., Analytic spread of filtrations and symbolic algebras , J. Lond. Math. Soc. 106 (2022), 26352662.CrossRefGoogle Scholar
Cutkosky, S. D. and Sarkar, P., Multiplicities and mixed multiplicities of arbitrary filtrations , Res. Math. Sci. 9 (2022), art. ID 14, volume in honor of Jürgen Herzog.CrossRefGoogle Scholar
Cutkosky, S. D. and Srinivas, V., On a problem of Zariski on dimensions of linear systems , Ann. of Math. 137 (1993), 531559.CrossRefGoogle Scholar
Dao, H., De Stefani, A., Grifo, E., Huneke, C., and Núñez-Betancourt, L., “ Symbolic powers of ideals ” in Singularities and Foliations, Geometry, Topology and Applications, Springer Proc. Math. Stat. 222, Springer, Cham, 2018, 387432.CrossRefGoogle Scholar
Dao, H. and Montaño, J., Symbolic analytic spread, upper bounds and applications , J. Inst. Math. Jussieu 6 (2021), 19691981.CrossRefGoogle Scholar
Grothendieck, A. and Dieudonné, J., Eléments de Géométrie Algébrique II, Étude globale élémentaire de quelques classes de morphisms , Publ. Math. Inst. Hautes Études Sci. 8 (1961), 5222.Google Scholar
Grothendieck, A. and Dieudonné, J., Eléments de Géométrie Algébrique IV, Étude locale des schémes et des morphismes de schémes (seconde partie) , Publ. Math. Inst. Hautes Études Sci. 24 (1965), 5231.Google Scholar
Grothendieck, A. and Dieudonné, J., Eléments de Géométrie Algébrique IV, Étude locale des schémes et des morphismes de schémes (troisième partie) , Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5255.CrossRefGoogle Scholar
Hartshorne, R., Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, Heidelberg, 1977.CrossRefGoogle Scholar
Lazarsfeld, R., Positivity in Algebraic Geometry I and II, Springer, Berlin, 2004.CrossRefGoogle Scholar
Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxf. Grad. Texts Math. 6, Oxford University Press, Oxford, 2002, translated by Reinie Erné.Google Scholar
Lipman, J., Rational singularities with applications to algebraic surfaces and unique factorization , Publ. Math. Inst. Hautes Études Sci. 36 (1969), 195279.CrossRefGoogle Scholar
Lipman, J., Desingularization of 2-dimensional schemes , Ann. of Math. 107 (1978), 115207.CrossRefGoogle Scholar
Lipman, J., “Equimultiplicity, reduction and blowing up” in Draper, R. N. (ed.), Commutative Algebra, Lect. Notes Pure Appl. Math. 68, Marcel Dekker, New York, 1982, 111147.Google Scholar
Matsumura, H., Commutative Algebra, 2nd ed., Benjamin/Cummings, Reading, Massachusetts, 1980.Google Scholar
McAdam, S., Asymptotic prime divisors and analytic spreads , Proc. Amer. Math. Soc. 90 (1980), 555559.CrossRefGoogle Scholar
Milne, J. S., Étale Cohomology, Princeton Univ. Press, Princeton, N.J., 1980.Google Scholar
Muhly, H. and Sakuma, M., Asymptotic factorization of ideals , J. Lond. Math. Soc. 38 (1963), 341350.CrossRefGoogle Scholar
Nakayama, N., Zariski-Decomposition and Abundance, MSJ Memoirs 14, Math. Soc. Japan, Tokyo, 2004.CrossRefGoogle ScholarPubMed
Okuma, T., Rossi, M. E., Watanabe, K., and Yoshida, K., Normal Hilbert coefficients and elliptic ideals in normal two dimensional singularities, Nagoya Math. J., to appear 248 (2022), 779800.Google Scholar
Rotman, J., An Introduction to Homological Algebra, Academic Press, 1979.Google Scholar
Swanson, I. and Huneke, C., Integral Closure of Ideals, Rings and Modules, Cambridge Univ. Press, Cambridge, 2006.Google Scholar
Zariski, O., The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface , Ann. of Math. 76 (1962), 560615.CrossRefGoogle Scholar
Zariski, O. and Samuel, P., Commutative Algebra Volume II, Van Nostrand, Princeton, N.J., 1960.CrossRefGoogle Scholar