Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T19:25:31.343Z Has data issue: false hasContentIssue false

Algebraic Surfaces of General Type with Small c21 in Positive Characteristic

Published online by Cambridge University Press:  11 January 2016

Christian Liedtke*
Affiliation:
Mathematisches Institut, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany, liedtke@math.uni-duesseldorf.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we show that Horikawa surfaces lift to characteristic zero.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2008

References

[Ar] Artin, M., Algebraic Construction of Brieskorn’s Resolutions, J. of Algebra, 29 (1974), 330348.Google Scholar
[BHPV] Barth, W. P., Hulek, K., Peters, C. and de Ven, A. van, Compact Complex Surfaces, 2nd edition, Erg. d. Math., 3. Folge Volume 4, Springer, 2004.Google Scholar
[Bo] Bombieri, E., Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math., 42 (1973), 171220.Google Scholar
[CD] Cossec, F. R. and Dolgachev, I. V., Enriques Surfaces I, Prog. in Math., 76, Birkhäuser, 1989.Google Scholar
[EH] Eisenbud, D. and Harris, J., On Varieties of Minimal Degree (A Centennial Account), Algebraic Geometry, Bowdoin 1985, Proc. Symp. Pure Math., 46, Part 1 (1987), 313.CrossRefGoogle Scholar
[EKS] Eisenbud, D., Koh, J. and Stillman, M., Determinantal equations for curves of high degree, Am. J. Math., 110 (1988), 513539.CrossRefGoogle Scholar
[E] Ekedahl, T., Foliations and Inseparable Morphisms, Proc. Symp. Pure Math., 46 (1987), no. 2, 139149.Google Scholar
[E2] Ekedahl, T., Canonical models of surfaces of general type in positive characteristic, Inst. Hautes Etudes Sci. Publ. Math., 67 (1988), 97144.Google Scholar
[El] Elkik, R., Singularités rationelles et déformations, Invent. math., 47 (1978), 139147.Google Scholar
[En] Enriques, F., Le superficie algebriche, Nicola Zanichelli, 1949.Google Scholar
[EGA IV] Grothendieck, A., Éléments de géométrie algébrique IV: Etude locale des schémas et des morphismes de schémas, Publ. Math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967).CrossRefGoogle Scholar
[Hart] Hartshorne, R., Algebraic Geometry, Springer, 1977.CrossRefGoogle Scholar
[Hir1] Hirokado, M., Singularities of multiplicative p-closed vector fields and global 1-forms on Zariski surfaces, J. Math. Kyoto Univ., 39 (1999), no. 3, 455468.Google Scholar
[Hir2] Hirokado, M., Zariski surfaces as quotients of Hirzebruch surfaces by 1-foliations, Yokohama Math. J., 47 (2000), 103120.Google Scholar
[Hor1] Horikawa, E., On Deformations of Quintic Surfaces, Invent. math., 31 (1975), 4385.Google Scholar
[Hor2] Horikawa, E., Algebraic surfaces of general type with small , I, Ann. Math., 104 (1976), 357387.Google Scholar
[Ill] Illusie, L., Grothendieck’s existence theorem in formal geometry with a letter of Jean-Pierre Serre, AMS Math. Surveys Monogr. 123, Fundamental Algebraic Geometry (2005), 179233.Google Scholar
[Jou] Jouanolou, J.-P., Théorèmes de Bertini et Applications, Prog. in Math., 42, Birkhäuser, 1983.Google Scholar
[Lie] Liedtke, C., Uniruled Surfaces of General Type, arXiv:math.AG/0608604 (2006), to appear in Math. Z.Google Scholar
[Noe] Noether, M., Zur Theorie der eindeutigen Entsprechungen algebraischer Gebilde, Math. Ann., 8 (1875), 495533.CrossRefGoogle Scholar
[S] Šafarevič, I. R. et al., Algebraic Surfaces, Proc. Steklov Inst. 75, 1965.Google Scholar