High resolution monochomatic diffraction imaging is playing a central role in the optimization of novel high energy radiation detectors for superior energy resolution at room temperature. In the early days of the space program, the electronic transport properties of mercuric iodide crystals grown in microgravity provided irrefutable evidence that substantial property improvement was possible. Through diffraction imaging, this superiority has been traced to the absence of inclusions. At the same time, other types of irregularity have been shown to be surprisingly less influential. As a result of the knowledge gained from these observations, the uniformity of terrestrial crystals has been modified, and their electronic properties have been enhanced. Progress toward property optimization through structural control is described.