Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-10T02:09:41.861Z Has data issue: false hasContentIssue false

ZnO-based p-n Junctions with p-type ZnO by ZnTe Oxidation

Published online by Cambridge University Press:  01 February 2011

Eliana Kaminska
Affiliation:
eliana@ite.waw.pl, Institute of Electron Technology, Al. Lotnikow 32/46, Warsaw, N/A, 02-668, Poland
Ewa Przezdziecka
Affiliation:
eilczuk@ifpan.edu.pl, Institute of Physics, PAS, Poland
Anna Piotrowska
Affiliation:
ania@ite.waw.pl, Institute of Electron Technology, Poland
Jacek Kossut
Affiliation:
kossut@ifpan.edu.pl, Institute of Physics, PAS, Poland
Elzbieta Dynowska
Affiliation:
dynow@ifpan.edu.pl, Institute of Physics, PAS, Poland
Witold Dobrowolski
Affiliation:
dobro@ifpan.edu.pl, Institute of Physics, PAS, Poland
Adam Barcz
Affiliation:
barcz@ite.waw.pl, Institute of Electron Technology, Poland
Rafal Jakiela
Affiliation:
jakiela@ifpan.edu.pl, Institute of Physics, PAS, Poland
Elzbieta Lusakowska
Affiliation:
lusake@ifpan.edu.pl, Institute of Physics, PAS, Poland
Jacek Ratajczak
Affiliation:
ratajczak@ite.waw.pl, Institute of Electron Technology, Poland
Get access

Abstract

The fabrication and properties of ZnO-based rectifying p-n and p-i-n junctions are reported. ZnO films with p-type conductivity were obtained by oxidation of ZnTe grown by MBE on GaAs substrate. Insulating and n-type ZnO films were deposited by magnetron sputtering. The processing of p-n junctions into device structures involved the formation of mesa geometry and preparation of ohmic contacts to p- and n-type regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aoki, T., Hatanaka, Y., Look, D. C., Appl. Phys. Lett. 76, 3257 (2000).Google Scholar
2. Ryu, Y. R., Lee, T. S., Leem, J. H., White, H. W., Appl. Phys. Lett. 83, 4032 (2003).Google Scholar
3. Bian, J. M., Li, X. M., Zhang, C. Y., Yu, W. D., Gao, X. D., Appl. Phys. Lett. 85, 4070 (2004).Google Scholar
4. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., Kawasaki, M., nature materials 4, 42 (2004).Google Scholar
5. Yang, H., Li, Y., Norton, D. P., Pearton, S. J., Appl. Phys. Lett. 86, 172103 (2005).Google Scholar
6. Kaminska, E., Piotrowska, A., Kossut, J., Barcz, A., Butkute, R., Dobrowolski, W., Dynowska, E., Jakiela, R., Przezdziecka, E., Lukasiewicz, R., Aleszkiewicz, M., Wojnar, P., Kowalczyk, E., Sol. St. Comm. 135, 11 (2005).Google Scholar
7. Przezdziecka, E., Kaminska, E., Dynowska, E., Butkute, R., Dobrowolski, W., Kepa, H., Jakiela, R., Aleszkiewicz, M., Lusakowska, E., Janik, E., Kossut, J., phys. stat. sol. (c) 2, 1218 (2005).Google Scholar
8. Wolfe, C. M. and Stillman, G. E., Semiconductors and Semimetals, 10, 175 (1975).Google Scholar
9. Przezdziecka, E., Kaminska, E., Dynowska, E., Dobrowolski, W., Jakiela, R., Klopotowski, L., Sawicki, M., Kiecana, M., Kossut, J., phys. stat. sol. (c) 3, 988 (2006).Google Scholar
10. Limpijumnong, S., Zhang, S. B., Wei, S.-H., Park, C. H., Phys. Rev. Lett. 92, 1555504–1 (2004).Google Scholar