Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T05:19:32.398Z Has data issue: false hasContentIssue false

Zinc Oxide and Copper Oxide Nanostructures: Fundamentals and Applications

Published online by Cambridge University Press:  12 January 2012

Magnus Willander
Affiliation:
Department of Science and Technology, Campus Norrköping, Linköping University SE-601 74 Norrköping, Sweden
Omer Nur
Affiliation:
Department of Science and Technology, Campus Norrköping, Linköping University SE-601 74 Norrköping, Sweden
Gul Amin
Affiliation:
Department of Science and Technology, Campus Norrköping, Linköping University SE-601 74 Norrköping, Sweden
A. Zainelabdin
Affiliation:
Department of Science and Technology, Campus Norrköping, Linköping University SE-601 74 Norrköping, Sweden
S. Zaman
Affiliation:
Department of Science and Technology, Campus Norrköping, Linköping University SE-601 74 Norrköping, Sweden
Get access

Abstract

Copper oxide (CuO) and zinc oxide (ZnO) nanostructures complement each other since CuO is unintentional p-type and ZnO unintentional n-type. Using the low temperature chemical growth approach, the effect on morphology of varying the pH of the grown ZnO nanostructures and CuO micro structures is monitored. For both materials the variation of the pH was found to lead to a large variation on the morphology achieved. The grown ZnO NRs and CuO micro flowers material were used to fabricate devices. We demonstrate results from ZnO nanorods (NRs)/polymer p-n hybrid heterojunctions chemically grown on paper and using a process on paper for light emitting diodes (LEDs) applications as well as some large area light emitting diodes LEDs. The growth of CuO micro flowers indicated good quality material for sensing applications. The grown CuO micro flowers were employed as pH sensors. The results indicated a superior performance as expect due to the catalytic properties of this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klingshirn, C. F., Zinc Oxide from fundamental properties towards novel applications. Springer: Heidelberg; London, 2010.Google Scholar
2. Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Zuniga Perez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Al-Suleiman, M.; El-Shaer, A.; Che Mofor, A.; Postels, B.; Waag, A.; Boukos, N.; Travlos, A.; Kwack, H. S.; Guinard, J.; Le Si Dang, D., Nanotechnology 2009, 20(33), 332001.Google Scholar
3. Yi, J.; Lee, J. M.; Park, W. I., Sensors and Actuators B: Chemical 2011, 155(1), 264269.Google Scholar
4. Nicolay, S.; Fay, S.; Ballif, C., Cryst Growth Des 2009, 9(11), 49574962.Google Scholar
5. Mosnier, J. P.; O’Haire, R. J.; McGlynn, E.; Henry, M. O.; McDonnell, S. J.; Boyle, M. McGuigan, K. G., Sci Technol Adv Mat 2009, 10(4).Google Scholar
6. Zhang, H.; Feng, J.; Wang, J.; Zhang, M., Materials Letters 2007, 61(30), 52025205.Google Scholar
7. Hochepied, J. F.; de Oliveira, A. P. A.; Guyot-Ferreol, V.; Tranchant, J. F., J Cryst Growth 2005, 283(1-2), 156162.Google Scholar
8. Xu, S.; Wang, Z. L., Nano Research 2011, 4(11), 10131098.Google Scholar
9. Yin, M., Wu, C K, Lou, Y B, Burda, C, Koberstein, J T, Zhu, Y M, O’Brien, S, J. Am. Chem. Soc. 127 (2005) 95069511.Google Scholar
10. Zhou, K, Wang, R, Xu, B, Li, Y, Nanotechnology 17 (2006) 39393943.Google Scholar
11. Xu, Y, Chen, D, Jiao, X J, Phys. Chem. B 109 (2005) 1356113566.Google Scholar
12. Li, Y, Wei, Y, Shi, G, Xian, Y, Jin, L, Electroanalysis 23 (2011) 497502.Google Scholar
13. Jia, W, Guo, M, Zheng, Z, Yu, T, Wang, Y, Rodriguez, E G, Lei, Y., Electroanalysis 20 (2008) 21532157.Google Scholar
14. Peea, J-H, Leeb, D-W, Kimc, U-S, Choi E-, S, Materials Science Forum 534 (2007) 7781.Google Scholar
15. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H., Nature 2004, 432, 488492.Google Scholar
16. Sakamoto, K.; Usami, K.; Uehara, Y.; Ushioda, S., Appl Phys Lett 2005, 87 (21).Google Scholar
17. Klason, P.; Borseth, T. M.; Zhao, Q. X.; Svensson, B. G.; Kuznetsov, A. Y.; Bergman, P. J.; Willander, M., Solid State Commun 2008, 145(5-6), 321326.Google Scholar
18. Montilla, F.; Mallavia, R., Adv Funct Mater 2007, 17(1), 7178.Google Scholar
19. Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K., J Appl Phys 2009, 105 (8).Google Scholar
20. Zaman, S, Asif, M H, Zainelabdin, A, Amin, G, Nur, O, Willander, M, Journal of Electroanalytical Chemistry 2011, 662, 421425.Google Scholar