Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T05:27:16.565Z Has data issue: false hasContentIssue false

X-Ray Crystal Diffraction Study of Zr,Na-β-Alumina

Published online by Cambridge University Press:  25 February 2011

Wayne H. Pearson
Affiliation:
Chemistry Department, 572 Holloway Rd., United States Naval Academy, Annapolis, MD, 21402-5026
Joseph F. Lomax
Affiliation:
Chemistry Department, 572 Holloway Rd., United States Naval Academy, Annapolis, MD, 21402-5026
Get access

Abstract

The reaction of crystalline lithium-stabilized Na-β”-Alumina with zirconium(IV) chloride at 400°C for 303h has caused sodium ions to exchange with zirconium ions. An X-ray crystal diffraction study of both the parent lithium stabilized Na-β”-alumina (1) and the partially zirconium exchanged product (2) have been made at 147 K. Crystal data for 1: rhombohedral, R 3 m, a = 5.6037 (3), c = 33.6210 (86) Å, V = 914.31 (24) Å3. Crystal data for 2: rhombohedral, R 3 m, a = 5.5994 (5), c = 33.7711 (51) Å, V = 916.96 (16) Å3. Zirconiums in 2 reside, predominately, in the Beevers-Ross type site.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dunn, B., Farrington, G. C., Thomas, J. O., MRS Bulletin, September, 1989.Google Scholar
[2] +1 ions: Briant, J. L., Farrington, G. C., Solid State Chem. 33, 385 (1980). +2 ions: G. C. Farrington, B. Dunn, Solid State Ionics 7, 267 (1982). +3 ions: G. C. Farrington, B. Dunn, J. 0. Thomas Appl. Phys. A 32, 159 (1983).Google Scholar
[3] Bettman, M., Peters, C. R., J. Phys Chem. 73, 1774 (1969).Google Scholar
[4] Beevers, C.A., Ross, M.A., Z. Krist. 97, 59 (1937).Google Scholar
[5] Dunn, B., Schwartz, B. B., Thomas, J. O., Morgan, P. E. D., Solid State Ionics 28–30, 301 (1988).Google Scholar
[6] Lomax, J. F., Dryfuse, K. M., Patrick, K. J., Carney, N. S., Wintersgill, M. C., Fontanella, J. J., Lomax, S. Q., Chem. Mater., submitted for publication.Google Scholar
[7] Ings, J., Belt, R., J. Crystal Growth 98, 439 (1989).Google Scholar
[8] MolEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands (1990).Google Scholar
[9] denBoer, M. L., Pak, Y. S., Adamic, K. J., Greenbaum, S. G., Wintersgill, M. C., Lomax, J. F., Dunn, B., Farrington, G. C., Phys. Rev. B 45, 6369 (1992).Google Scholar
[10] Thomas, J. O., private communication.Google Scholar
[11] Boilot, J. P., Collin, G., Colomban, Ph., Comes, R., Phys. Rev. B 22, 5912 (1980).Google Scholar
[12] (a) Thomas, J. O., Alden, M., Farrington, G. C., Solid State Ionics 9/10, 301 (1983). (b) M. Alden, J. 0. Thomas, G. C. Farrington Acta Cryst. C40, 1763 (1984) and B40, 208 (1984). (c) J. P. Boilot, Ph. Colomban, M. R. Lee, G. Collin, R. Comes, Solid State Ionics 9/10, 315 (1983).Google Scholar
[13] Carrillo-Cabrera, W., Thomas, J. O., Farrington, G. C. Solid State Ionics, 28–30, 317 (1988).Google Scholar