Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-27T23:58:39.820Z Has data issue: false hasContentIssue false

Xps Studies of Chlorine Etching Interactions with GaAs(100)

Published online by Cambridge University Press:  21 February 2011

Andrew Freedman
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
C.D. Stinespring
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Get access

Abstract

GaAs (100) substrates have been chlorinated with both atomic and molecular beams of chlorine under ultra high vacuum conditions. X-ray photoelectron spectra of the resulting samples indicate that at a substrate temperatures of 130 K, Cl atoms efficiently penetrate the GaAs lattice forming Ga and As chloride species. Exposure to Cl atoms at 173 K results in desorption of As, leaving GaClx species behind. Molecular chlorine reacts much less efficiently.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gels, N.W., Lincoln, G.A., Efremow, N. and Piacentinl, W.J., J. Vac. Sci. Technol. 19, 1390 (1981).Google Scholar
2. Pang, S.W., Gels, M.W., Efremow, N.N. and Lincoln, G.A., J. Vac. Sci. Technol. B3, 398 (1985).Google Scholar
3. Wong, H.F., Green, D.L., Liu, T.Y., Lishan, D.G., Bellis, M., Hu, E.L., Petroff, P.M., Holtz, P.O. and Merz, J.L., J. Vac. Sci. Technol. B6, 1906 (1988).Google Scholar
4. Pang, S.W., Goodhue, W.D., Lyszczarz, T., Ehrlich, D.J., Goodman, R.B. and Johnson, G.D., J. Vac. Scl. Technol. B6, 1916 (1988).Google Scholar
5. Skidmore, J.A., Coldren, L.A., Hu, E.L., Merz, J.L. and Asakawa, K., Appl. Phys. Lett. 53, 2308 (1988).Google Scholar
6. Furuhata, N., Miyamoto, H., Akamoto, A. and Ohata, K., J. Appl. Phys. 65, 168 (1989).Google Scholar
7. Taneya, M., Sugimoto, Y., Hikada, H. and Akita, K., Jap. J. AppI. Phys. 28, L515 (1989).Google Scholar
8. Nevin, S.C. and Becker, G.E., J. Appl. Phys. 58, 4670 (1985).Google Scholar
9. O'Brien, W.L., Paulsen-Boaz, C.M., Rhodin, T. and Rathbun, L.C., J. Appl. Phys. 64, 6523 (1988).Google Scholar
10. Hou, H., Zhang, Z., Chen, S., Su, C., Yan, W. and Vernon, M., App1. Phys. Lett. 55, 801 (1989).Google Scholar
11. Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Dalta, S., Becket, W.H. and Nurmikko, A.V., IEEE J. Quantum Electron QE22, 1666 (1986).Google Scholar
12. Stinespring, C.D. and Freedman, A., J. Vac. Sci. Technol. A4, 1946 (1986).Google Scholar
13. Stinespring, C.D. and Freedman, A., “Atomic Chlorine Source For Semiconductor Etching Studies”, NSF Final Report. Aerodyne Research, Inc. Report No. ARI-RR-614 (1987).Google Scholar
14. Coburn, J.W. and Winters, H.F., J. Appl. Phys. 50, 3189 (1979).Google Scholar
15. Broughton, J.Q. and Bagus, P.S., “Computer Modeling of Semiconductor Surface” P306 in the Chemistry of the Semiconductor Industry, Noss, S.J. and Ledwordth, A., eds., Chapman and Hall (New York) 1987.Google Scholar
16. Moran, J.F., McFeely, F.R., Shinn, N.D., Landgren, G., Himpsel, F.J., Appl. Phys. Lett. 45, 174 (1984).Google Scholar
17. Stinespring, C.D. and Freedman, A., Appl. Phys. Lett. 48, 718 (1986).Google Scholar