Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T06:43:35.407Z Has data issue: false hasContentIssue false

Wet Chemical Synthesis of Germanium Nanocrystals

Published online by Cambridge University Press:  15 February 2011

Xianmao Lu
Affiliation:
Department of Chemical Engineering, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology The University of Texas at Austin, Austin, TX 78712, USA
Brian A. Korgel
Affiliation:
Department of Chemical Engineering, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology The University of Texas at Austin, Austin, TX 78712, USA
Keith P. Johnston
Affiliation:
Department of Chemical Engineering, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology The University of Texas at Austin, Austin, TX 78712, USA
Get access

Abstract

Supercritical CO2 (sc-CO2) was first time utilized to make germanium (Ge) nanocrystals by thermolysis of diphenylgermane (DPG) or tetraethylgermane (TEG) with octanol as capping ligand at 500°C and 27.6 MPa. A new approach to prepare Ge nanocrystals of high chemical yield by reduction of GeI2 with LiAlH4 in trioctylphosphine (TOP) at 300°C is also presented. In both cases, Ge nanoparticles with high crystallinity were observed with high resolution transmission electron microscopy (HRTEM), and the presence of Ge was confirmed by X-ray diffraction (XRD) pattern. Compared to the supercritical organic solvents investigated in the previous study to make Ge nanoparticles, the reaction in sc-CO2 produced much less organic contaminants and made the removal of by-products and cleaning of the nanocrystals much easier. While Ge nanoparticles were synthesized in sc-CO2 with DPG and octanol, bulk Ge instead of nanoparticles was obtained without the presence of CO2 at the same concentration of DPG and octanol. High chemical yield of up to 75% was achieved for the Ge nanoparticles made from GeI2 with TOP, and only minimal cleaning is required to obtain Ge nanocrystals with high purity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Heath, J. R. Chem. Soc. Rev. 1998, 27, 65.Google Scholar
(2) Alivisatos, A. P. Science 1996, 271, 933.Google Scholar
(3) Bley, R. A.; Kauzlarich, S. M.; Davis, J. E.; Lee, H. W. Chem. Mater. 1996, 8, 1881.Google Scholar
(4) Bley, R. A.; Kauzlarich, S. M. J. Am. Chem. Soc. 1996, 118, 12461.Google Scholar
(5) Littau, K. A.; Szajowski, P. J.; Muller, A. J.; Kortan, A. R.; Brus, L. E. J. Phys. Chem. 1993, 97, 1224.Google Scholar
(6) Kornowski, A.; Giersig, M.; Vogel, R.; Chemseddine, A.; Weller, H. Adv. Mater. 1993, 5, 634.Google Scholar
(7) Maeda, Y.; Tsukamoto, N.; Yazawa, Y.; Kanemitsu, Y.; Masumoto, Y. Appl. Phys. Lett. 1991, 59, 3168.Google Scholar
(8) Sigman, M. B. Jr; Saunders, A. E.; Korgel, B. A. Langmuir 2004, 20, 978.Google Scholar
(9) Saunders, A. E.; Sigman, M. B. Jr; Korgel, B. A. J. Phys. Chem. B 2004, 108, 193.Google Scholar
(10) Son, S. U.; Jang, Y.; Yoon, K. Y.; Kang, E.; Hyeon, T. Nano Lett. 2004, 4, 1147.Google Scholar
(11) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.Google Scholar
(12) Stowell, C. A.; Wiacek, R. J.; Saunders, A. E.; Korgel, B. A. Nano Lett. 2003, 3, 1441.Google Scholar
(13) Heath, J. R. Science 1992, 258, 1131.Google Scholar
(14) Heath, J. R.; Shiang, J. J.; Alivisatos, A. P. J. Chem. Phys. 1994, 101, 1607.Google Scholar
(15) Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H. Chem. Mater. 1999, 11, 2493.Google Scholar
(16) Wilcoxon, J. P.; Provencio, P. P.; Samara, G. A. Phys. Rev. B 2001, 64, 035417.Google Scholar
(17) Eckert, C. A.; Knutson, B. L.; Debenedetti, P. G. Nature 1996, 383, 313.Google Scholar
(18) Shah, P. S.; Hanrath, T.; Johnston, K. P.; Korgel, B. A. J. Phys. Chem. B 2004, 108, 9574.Google Scholar
(19) Holmes, J. D.; Ziegler, K. J.; Doty, R. C.; Pell, L. E.; Johnston, K. P.; Korgel, B. A. J. Am. Chem. Soc. 2001, 123, 3743.Google Scholar
(20) Pell, L. E.; Schricker, A. D.; Mikulec, F. V.; Korgel, B. A. Langmuir 2004, 20, 6546.Google Scholar
(21) Lu, X.; Hanrath, T.; Johnston, K. P.; Korgel, B. A. Nano Lett. 2003, 3, 93.Google Scholar
(22) Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Science 2000, 287, 1471.Google Scholar
(23) Hanrath, T.; Korgel, B. A. J. Am. Chem. Soc. 2002, 124, 1424.Google Scholar
(24) Hanrath, T.; Korgel, B. A. Adv. Mater. 2003, 15, 437.Google Scholar
(25) Davidson, F. M.; Schricker, A. D.; Wiacek, R. J.; Korgel, B. A. Adv. Mater. 2004, 16, 646.Google Scholar
(26) Watkins, J. J.; McCarthy, T. J. Chem. Mater. 1995, 7, 1991.Google Scholar
(27) Watkins, J. J.; Blackburn, J. M.; McCarthy, T. J. Chem. Mater. 1999, 11, 213.Google Scholar
(28) Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A. J. Phys. Chem. B 2001, 105, 9433.Google Scholar
(29) Lu, X.; Ziegler, K. J.; Ghezelbash, A.; Johnston, K. P.; Korgel, B. A. Nano Lett. 2004, 4, 969.Google Scholar
(30) Myung, N.; Lu, X.; Johnston, K. P.; Bard, A. J. Nano Lett. 2004, 4, 183.Google Scholar