Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T05:55:30.683Z Has data issue: false hasContentIssue false

Vortex Pinning and Dynamics in HTS films: Role of Extended Linear Defects

Published online by Cambridge University Press:  12 October 2011

Alexander L. Kasatkin
Affiliation:
Institute of Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky Blvd., 03142 Kiev, Ukraine
Constantin G. Tretiatchenko
Affiliation:
Institute of Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky Blvd., 03142 Kiev, Ukraine
Volodymyr M. Pan
Affiliation:
Institute of Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky Blvd., 03142 Kiev, Ukraine
Get access

Abstract

The model of single vortex escape from extended linear defect and subsequent vortex dynamics under the Lorentz force action in a rather thick (d > 2λ) 3D anisotropic superconductor is developed. We consider the case of parallel c-oriented linear defects as well as the case of equidistant linear row of such kind of defects, which represents the dislocation model of low-angle [001] tilt grain boundary in HTS films and bicrystals. The suggested model based on the classical mechanics approach allows to describe behavior of an elastic vortex string in the potential well of linear defect and under the action of Lorentz force on its end within the Meissner current carrying layer and to determine the depinning critical current density at low magnetic fields and temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Civale, L., Supercond. Sci. Technol. 10, A11 (1997).Google Scholar
2. Pan, V. M., Kasatkin, A. L., Svetchnikov, V. L., and Zandbergen, H. W., Cryogenics 33, 21 (1993).Google Scholar
3. Dam, B., Huijbregtse, J. M., Klaassen, F. C., van der Geest, R. C. F., Doornbos, G., Rector, J. H., Testa, A. M., Freisem, S., Martinez, J. C., Stauble-Pumpin, B. and Griessen, R., Nature 399, 439 (1999).Google Scholar
4. Larbalestier, D., Gurevich, A., Feldmann, D. M., and Polyanskii, A., Nature 414, 368 (2001).Google Scholar
5. Hilgenkamp, H. and Mannhart, J., Rev. Mod. Phys. 74, 485 (2002).Google Scholar
6. Wee, S. H., Goyal, A., Zuev, Yu. L., and Cantoni, C., Appl. Phys. Express 1, 111702 (2008).Google Scholar
7. Maiorov, B., Baily, S. A., Zhou, H., Ugurlu, O., Kennison, J. A., Dowden, P. C., Holesinger, T. G. Foltyn, S. R. and Civale, L., Nature Materials 8, 398 (2009).Google Scholar
8. Brandt, E. H., Phys.Rev.Lett. 69, 1105 (1992).Google Scholar
9. Khokhlov, V. A., Kosse, A. I., Kuzovlev, Yu. E., Levchenko, G. G., Medvedev, Yu. V., Prokhorov, A. Yu., Mikheenko, P., Chakalov, R. and Muirhead, C. M., Supercond. Sci. Technol. 17, S520 (2004).Google Scholar
10. Indenbom, M. V., van der Beek, C. J., Konczykowski, M. and Holtzberg, F., Phys.Rev.Lett. 84, 1792 (2000).Google Scholar
11. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. and Vinokur, V. M., Rev. Mod. Phys. 66, 1125 (1994).Google Scholar
12. Pashitskii, E. A. and Vakaryuk, V. I., Low Temp. Phys. 28, 11 (2002).Google Scholar
13. Tinkham, M., “Introduction to superconductivity”, 2nd ed. (McGraw-Hill Inc., 1996), 454p.Google Scholar
14. Heinig, N. F., Redwing, R. D., Nordman, J. E., and Larbalestier, D., Phys. Rev. B 60, 1409 (1999).Google Scholar
15. Nelson, D. R. and Vinokur, V. M., Phys.Rev. B 48, 13060 (1993).Google Scholar
16. Kasatkin, A.L., Pan, V. M. and Freyhardt, H. C., IEEE Trans. Appl. Supercond. 7, 1588 (1997).Google Scholar
17. Smith, A. W., Jaeger, H. M., Rosenbaum, T. F., Petrean, A. M., Kwok, W. K. and Crabtree, G. W., Phys.Rev. Lett. 84, 4974 (2000).Google Scholar
18. Brandt, E. H. and Indenbom, M. V., Phys. Rev. B 48, 12893 (1993).Google Scholar
19. Jooss, Ch., Albrecht, J., Kuhn, H., Leonhardt, S., and Kronmuller, H., Rep. Progr. Phys. 65, 651, (2002).Google Scholar
20. Kim, S. I., Kametani, F., Chen, Z., Gurevich, A., and Larbalestier, D. C., Haugan, T., and Barnes, P., Appl. Phys. Lett. 90, 252502 (2007).Google Scholar
21. Zhou, H., Maiorov, B., Baily, S. A., Dowden, P. C., Kennison, J. A., Stan, L., Holesinger, T. G., Jia, Q. X., Foltyn, S. R., and Civale, L., Supercond. Sci. Technol. 22, 085013 (2009).Google Scholar
22. Develos-Bagarinao, K., Yamasaki, H., Nie, J. C., and Nakagawa, Y, Supercond. Sci. Technol. 18, 667 (2005).Google Scholar
23. Gurevich, A., Supercond. Sci. Technol. 20, S128 (2007).Google Scholar