Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-20T21:30:08.957Z Has data issue: false hasContentIssue false

Visible-light Photoresponse of Nitrogen-doped TiO2: Excited State Studies Using Time-dependent Density Functional Theory and Equation-of-Motion Coupled Cluster Methods

Published online by Cambridge University Press:  01 February 2011

Niranjan Govind
Affiliation:
niri.govind@pnl.gov, Pacific Northwest National Laboratory, EMSL, Richland, WA 99352, Washington, United States
Roger Rousseau
Affiliation:
roger.rousseau@pnl.gov, Pacific Northwest National Laboratory, FCSD, Richland, WA 99352, Washington, United States
Amity Andersen
Affiliation:
amity.andersen@pnl.gov, Pacific Northwest National Laboratory, EMSL, Richland, WA 99352, Washington, United States
Karol Kowalski
Affiliation:
karol.kowalski@pnl.gov, Pacific Northwest National Laboratory, EMSL, Richland, WA 99352, Washington, United States
Get access

Abstract

To shed light on the nature of the electronic states at play in N-doped TiO2 nanoparticles, we have performed detailed ground and excited state calculations on pure and N-doped TiO2 rutile using an embedding model. We have validated our model by comparing ground-state embedded results with those obtained from periodic DFT calculations. Our results are consistent with periodic calculations. Using this embedding model we have performed B3LYP based TDDFT calculations of the excited state spectrum. We have also studied the lowest excitations using high-level equation-of-motion coupled cluster (EOMCC) approaches involving all single and inter-band double excitations. We compare and contrast the nature of the excitations in detail for the pure and doped systems using these calculations. Our calculations indicate a lowering of the bandgap and confirm the role of the N3- states on the UV/Vis spectrum of N-doped TiO2 rutile supported by experimental findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fujishima, A., Honda, K., Nature, 238, 37 (1972); B. O'Regan, M. Gratzel, Nature, 353, 737 (1991); M. Gratzel, Nature, 414, 338 (2001); M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95, 69 (1995); O. Carp, C. L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004).Google Scholar
2 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Science, 293, 269 (2001)Google Scholar
3 Valentin, C. Di, Pacchioni, G., and Selloni, A., Phys. Rev. B 70, 085116 (2004); C. Di Valentin, G. Pacchioni, A.Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109, 11414 (2005); R. Asahi and T. Morikawa, Chem. Phys. 339, 57 (2007); C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini, E. Giamello, Chem. Phys. 339, 44 (2007); E. Finazzi, C. Di Valentin, A. Selloni, G. Pacchioni, J. Phys. Chem. C 111, 9275 (2007).Google Scholar
4 Chambers, S. A., Cheung, S. H., Shutthanandan, V., Thevuthasan, S., Bowman, M. K., and Joly, A. G., Chem. Phys. 339, 27 (2007); S. H. Cheung, P. Nachimuthu, A. G. Joly, M. H. Engelhard, M. K. Bowman, S. A. Chambers, Surf. Sci. 601, 1754 (2007).Google Scholar
5 Huang, P., Carter, E.A., Ann. Rev. Phys. Chem. 59, 261 (2008); N. Govind et al. Chem. Phys. Lett., 473, 353 (2009).Google Scholar
6 Gonze, X. et al. , Computer Phys. Commun. 180, 2582 (2009).Google Scholar
7 Govind, N., Rousseau, R., Andersen, A., Kowalski, K., in preparation (2010).Google Scholar
8 Casarin, M., Maccato, C., Vittadini, A., J. Chem. Phys. B 102, 10745 (1998); M.L. Sushko, A-Yu. Gal, A.L. Shluger, J. Phys. Chem. B 110, 4853 (2006).Google Scholar
9 EMSL Basis Set Exchange, EMSL, PNNL, Richland, WA 99352.Google Scholar
10 Bylaska, E. et al. , NWChem Development Version (2010).Google Scholar
11 Casida, M.E. In: Chong, D.E., Editor, Recent Advances in Density Functional Methods 155, World Scientific, Singapore (1995).Google Scholar
12 Geertsen, J., Rittby, M., Bartlett, R. J., Chem. Phys. Lett., 164 (1), 57 (1989); D. C. Comeau, R. J. Bartlett, Chem. Phys. Lett., 207 (4-6), 414 (1993); J. F. Stanton, R. J. Bartlett, J. Chem. Phys., 98 (9), 7029 (1993); R. J. Bartlett, M. Musial, Rev. Mod. Phys., 79 (1), 291 (2007); H. J. Monkhorst, Int. J. Quant. Chem. S11, 421 (1977); H. Koch, P. Jorgensen, J. Chem. Phys. 93 (5), 3333 (1990); K. Kowalski, P. Piecuch, J. Chem. Phys., 115 (2), 643 (2001); S. A. Kucharski, M. Wloch, M. Musial, R. J. Bartlett, J. Chem. Phys., 115 (18), 8263 (2001); K. Kowalski, S. Krishnamoorthy, O. Villa, J.R. Hammond, N. Govind, J. Chem. Phys., 2010 (in press).Google Scholar
13 Muscat, J., Wander, A., Harrison, N.M., Chem. Phys. Lett., 342, 397 (2001).Google Scholar