Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-15T08:57:56.720Z Has data issue: false hasContentIssue false

Vibrational Spectroscopic Studies of the Local Environment in 4-Volt Cathode Materials

Published online by Cambridge University Press:  10 February 2011

C. Julien
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogènes, UA800, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France
M. Massot
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogènes, UA800, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France
C. Perez-Vicente
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogènes, UA800, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France
E. Haro-Poniatowski
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogènes, UA800, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France
G. A. Nazri
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center Warren, MI 48090, USA
A. Rougier
Affiliation:
Physics and Physical Chemistry Department, RCEL, General Motors R&D Center Warren, MI 48090, USA
Get access

Abstract

We report the vibrational spectra of numerous 4-volt cathode materials, the transition metal oxides which are potential materials for advanced Li-ion batteries. They provide high specific energy density, high voltage, and remarkable reversibility for lithium intercalation-deintercalation process. Studied were carried out by Raman and FTIR spectroscopies. Oxides such as LiMn2O4, LiNiVO4, LiCoVO4 spinels, LiMeO2 (Me=Co, Ni, Cr) layered compounds and their mixed compounds have been investigated. The local environment of cations against oxygen neighboring atoms has been determined by considering tetrahedral and octahedral units building the lattice. Structural modifications induced by the intercalation-deintercalation process, by the cation substitution, or by the low-temperature preparation route are also examined. The results are compared with those of end members.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohzuku, T., in Lithium Batteries, New Materials, Developments and Perspectives, ed. by Pistoia, G. (Elsevier, Amsterdam, 1994), p. 239.Google Scholar
2. Ohzuku, T., Ueda, A., and Kitagawa, M., J. Electrochem. Soc., 142, 4033 (1995).10.1149/1.2048458Google Scholar
3. Delmas, C., Saadoune, I., and Rougier, A., J. Power Sources 43–44, 595 (1993).Google Scholar
4. Nazri, G.A., Rougier, A., and Kia, K.F., Mater. Res. Soc. Symp. Proc. 453, 635 (1997).10.1557/PROC-453-635Google Scholar
5. Huang, W. and Frech, R., Solid State Ionics 86–88, 395 (1996).Google Scholar
6. Julien, C., Rougier, A., and Nazri, G.A., Mater. Res. Soc. Symp. Proc. 453, 647 (1997).10.1557/PROC-453-647Google Scholar
7. Preudhomme, J. and Tarte, P., Spectrochim. Acta 27A, 845 (1971).Google Scholar
8. Tarte, P. and Preudhomme, J., Spectrochim. Acta 26A, 747 (1970).Google Scholar
9. Weinstock, N., Schulze, H., and Muller, A., J. Chem. Phys. 59, 5063 (1973).Google Scholar
10. Inaba, M., Todzuka, Y., Yoshida, H., Grincourt, Y., Tasaka, A., Tomida, Y., and Ogumi, Z., Chem. Lett. 889 (1995).Google Scholar
11. Hope, P. and Schepers, B., Anorg, Z.. Allgem. Chem. 295, 233 (1958).Google Scholar