Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T02:47:46.726Z Has data issue: false hasContentIssue false

Variations of Interfacial Roughness with Epilayer Thickness and Scaling Behavior in Si1−x,Gex, Grown on Si(100) Substrates

Published online by Cambridge University Press:  03 September 2012

Z. H. Ming
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
S. Huang
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
Y. L. Soo
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
Y. H. Kao
Affiliation:
Department of Physics, SUNY at Buffalo, Amherst, NY 14260
T. Carns
Affiliation:
Electrical Engineering Department, UCLA, Los Angeles, CA 90024
K. L. Wang
Affiliation:
Electrical Engineering Department, UCLA, Los Angeles, CA 90024
Get access

Abstract

Roughness parameters of sample surface and buried interfaces in a series of thin layers of Si0.4 GeO.6 grown on Si(100) by molecular beam epitaxy (MBE) were measured by using the technique of grazing-incidence x-ray scattering (GIXS). The strain in the layer and the critical thickness of the film were determined from x-ray diffraction of the Si(004) peak. The roughness parameters can be described by a scaling-law with an exponent β = 0.71 for both the surface and interfacial roughness. Establishment of a scaling law thus allows a possibility of predicting the interfacial roughness as a function of the epilayer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mandelbrodt, B., The Fractal Geometry of Nature (Freeman, New York, 1982).Google Scholar
2. Family, F., Physica A168, 561 (1990); and references therein. 3. M.Kardar, G.Parisi, and Y.C.Zhang, Phys. Rev. Lett. 56, 889 (1986).Google Scholar
4. Lai, Z.W. and Sarma, S. Das, Phys. Rev. Lett. 66, 2348 (1991).Google Scholar
5. Amar, J. G. and Family, F., Phys. Rev. A 41, 3399 (1990).Google Scholar
6. Collins, G.W., Letts, S.A., Fearon, E.M., McEachen, R.L., and Bemat, T.P., Phys. Rev. Lett. 73, 708 (1994).Google Scholar
7. He, Y.-L., Yang, N.-H., Lu, T.-M., and Wang, G.-C., Phys. Rev. Lett. 69, 3770 (1992).Google Scholar
8. Emst, E.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).Google Scholar
9. Kessler, D., Levine, H., and Sander, L., Phys. Rev. Lett. 69, 100 (1992).Google Scholar
10. You, H., Chiarello, R.P., Kim, H.K., and Vandervoort, K.G., Phys. Rev. Lett. 70, 2900 (1993).Google Scholar
11. Krug, J., Plischke, M., and Siegert, M., Phys. Rev. Lett. 70, 3271 (1993).Google Scholar
12. Yang, H.-N, Lu, T.-M., and Wang, G.-C., Phys. Rev. Lett. 68, 2612 (1992).Google Scholar
13. Ming, Z.H., Krol, A., Soo, Y. L., Kao, Y. H., Park, J. S. and Wang, K. L., Phys. Rev. B 47, 16373 (1993).Google Scholar
14. Hornstra, J. and Bartels, W.J., J. Crystal Growth, 44, 513(1978); P.J. Orders and B.F. Usher, Appl. Phys. Lett. 50, 980 (1987).Google Scholar
15. Ashcroft, N.W. and Mermin, N.D., Solid State Physics, p.447 (Saunders, Philadelphia, 1976).Google Scholar
16. People, R. and Bean, J.C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
17. Vidal, B. and Vincent, P., Appl. Opt. 23, 1794(1984).Google Scholar