Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T19:06:03.851Z Has data issue: false hasContentIssue false

Vacancy-Type Defects in Electron and Proton Irradiated II- VI Compounds

Published online by Cambridge University Press:  15 February 2011

S. Brunner
Affiliation:
Institut für Technische Physik, Technische Universitdit Graz, A-8010 Graz, Austria, wp@ifk.tu-graz.ac.at
W. Puff
Affiliation:
Institut für Technische Physik, Technische Universitdit Graz, A-8010 Graz, Austria, wp@ifk.tu-graz.ac.at
P. Mascher
Affiliation:
Centre for Electrophotonic Materials and Devices, Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
A. G. Balogh
Affiliation:
Department of Materials Science, Technische Hochschule Darmstadt, Darmstadt, Germany
H. Baumann
Affiliation:
Institut für Kernphysik, J.W. Goethe Universität Frankfurt, Frankfurt am Main, Germany
Get access

Abstract

In this contribution, we present a study aimed at investigating the basic properties of radiation induced defects in ZnS and ZnO and the influence of the atmosphere on the annealing characteristics of the defects. Positron annihilation experiments (both lifetime and Dopplerbroadening measurements) were performed on both single- and polycrystalline samples, irradiated with 3 MeV protons or 1 MeV electrons. For ZnS it was found that both electron and proton irradiation caused significant changes in the positron annihilation characteristics. The annealing of proton irradiated ZnS in air leads to significant oxidation and eventual transformation into ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Puff, W., Brunner, S., and Mascher, P., in: The Physics of Semiconductors edited by Lockwood, D.J.,(World Scientific Publ., Singapore, 1995) p. 2439 Google Scholar
[2] Puff, W., Brunner, S., Mascher, P. and Balogh, A.G., Materials Sci. Forum 196–201, 333 (1995).Google Scholar
[3] Brunner, S., Puff, W., Logar, B., Mascher, P., Balogh, A.G. and Baumann, H., Nukleonika (in print)Google Scholar
[4] Puff, W., Comput. Phys. Commun. 30, 359 (1983).Google Scholar
[5] Puff, W. and Meng, X.-T., J. Appl. Phys. 73, 648 (1993).Google Scholar
[6] Hautojärvi, P., Positrons in Solids, Springer, Berlin, 1979.Google Scholar
[7] Plazaola, F., Seitsonen, A.P., and Puska, M.J., J. Phys.: Condens. Matter 6, 8809 (1994).Google Scholar
[8] F Plazaola, Seitsonen, A.P., and Puska, M.J., Materials Sci. Forum 175–178, 469 (1995).Google Scholar
[9] Pareja, R., Cruz, R.M. de la and Moser, P., J. Phys.: Condens. Matter 4, 7153 (1992).Google Scholar
[10] Dlubek, G. and Krause, R., phys. stat. sol. (a) 102, 443 (1987).Google Scholar
[11] Watkins, G.D., in: Proc. International Conference on Radiation Effects in Semiconductors, (Inst. of Phys. Conf. Ser. 31, IOP, Bristol 1977) p. 95 Google Scholar
[12] Meyer, B.K. and Stadler, W., J. Cryst. Growth 161, 119 (1996).Google Scholar
[13] Matsuura, K., Tsurumi, I. and Takeda, F., phys. stat. sol. (a) 28, 379 (1975).Google Scholar
[14] Adams, M., Mascher, P. and Kitai, A.H., Appl. Phys. A 61, 217 (1995).Google Scholar
[15] Schultze, D., Steinike, U., Kussin, J. and Kretzschmar, U., Cryst. Res. Technol. 30, 553 (1995).Google Scholar
[16] Fernández, A.M. and Sebastian, P.J., J. Phys. D: Appl. Phys. 26, 2001 (1993).Google Scholar