Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-21T22:16:05.208Z Has data issue: false hasContentIssue false

Vacancy Promoted Interdiffusion in Quantum Wells and Applications to Optoelectronic Devices

Published online by Cambridge University Press:  03 September 2012

M. Ghisoni
Affiliation:
University of London Interdisciplinary Research Centre for Semiconductor Materials, Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K.
A. W. Rivers
Affiliation:
University of London Interdisciplinary Research Centre for Semiconductor Materials, Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K.
K. Lee
Affiliation:
University of London Interdisciplinary Research Centre for Semiconductor Materials, Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K.
G. Parry
Affiliation:
University of London Interdisciplinary Research Centre for Semiconductor Materials, Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, U.K.
X. Zhang
Affiliation:
University of London Interdisciplinary Research Centre for Semiconductor Materials, Department of Materials, Imperial College of Science Technology and Medicine, London SW7 2BP, U. K.
A. Staton-Bevan
Affiliation:
University of London Interdisciplinary Research Centre for Semiconductor Materials, Department of Materials, Imperial College of Science Technology and Medicine, London SW7 2BP, U. K.
M. Pate
Affiliation:
SERC Central Facility for III-V Materials, University of Sheffield, Sheffield SI 3JD, U.K.
G. Hill
Affiliation:
SERC Central Facility for III-V Materials, University of Sheffield, Sheffield SI 3JD, U.K.
C. Button
Affiliation:
SERC Central Facility for III-V Materials, University of Sheffield, Sheffield SI 3JD, U.K.
J. S. Roberts
Affiliation:
SERC Central Facility for III-V Materials, University of Sheffield, Sheffield SI 3JD, U.K.
Get access

Abstract

In this paper we shall look at a technique, known as impurity free vacancy diffusion (IFVD) for selectively altering the optoelectronic response of quantum well material after growth with a view to monolithic device integration. We will discuss the mechanism, practical considerations and some possible applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures. Fundamentals and Applications, (Academic Press Inc., 1991).Google Scholar
2. Wood, T. H., J. Lightwave Technol. 6, 743 (1988).CrossRefGoogle Scholar
3. Dagenais, M., Leheny, R. F., Temkin, H. and Bhattacharya, P., J. Lightwave Technol. 8, 846 (1990).CrossRefGoogle Scholar
4. Wada, O., Furuya, A. and Makiuchi, M., IEEE Photon. Technol. Lett. 1 16 (1989).CrossRefGoogle Scholar
5. Koch, T. L. and Koren, U., IEE Proc. J, 138, 139 (1991).Google Scholar
6. Liu, H., Roberts, J. C., Ramdani, J., Bedair, S. M., Farari, J., Vilcot, J. P. and Decoster, D., Appl. Phys. Lett. 58, 388 (1991).CrossRefGoogle Scholar
7. Wang, Y. L., Temkin, H., Hamm, R. A., Yadvish, R. D., Ritter, D., Harriott, L. H. and Panish, M. B., Electron. Lett. 27, 1325 (1991).Google Scholar
8. Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).CrossRefGoogle Scholar
9. O'Niell, M., Bryce, A. C., Marsh, J. H., De La Rue, R. M., Roberts, J. S. and Jeynes, C., Appl. Phys. Lett. 55, 1373 (1989).Google Scholar
10. Werner, J., Lee, T. P., Kapon, E., Colas, E., Stoffel, N. G., Schwarz, S. A., Schwartz, C. L. and Andreadakis, N., Appl. Phys. Lett. 57, 810 (1990).CrossRefGoogle Scholar
11. Thornton, R. L., Mosby, W. J., Donaldson, R. M. and Paoli, T. L., Appl. Phys. Lett. 56, 1623 (1990).CrossRefGoogle Scholar
12. Miller, D. A. B., Chemia, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H. and Burrus, C. A., Phys. Rev. B, 32, 1043 (1985).CrossRefGoogle Scholar
13. Vaidyanathan, K. V., Helix, M. J., Wolford, D. J., Streetman, B. G., Blattner, R. J. and Evans, C. A. Jr, J. Electrochem. Soc. 124, 1781 (1977).CrossRefGoogle Scholar
14. Katayama, M., Tokuda, Y., Ando, N., Inoue, Y., Usami, A. and Wada, T., Appl. Phys. Lett. 54, 2559 (1989).CrossRefGoogle Scholar
15. Ohdomari, I., Mizutani, S., Kurne, H., Mori, M., Kimura, I. and Yoneda, K., Appl. Phys. Lett. 32, 218 (1978).CrossRefGoogle Scholar
16. Katayama, M., Tokuda, Y., Inoue, Y., Usami, A. and Wada, T., J. Appl. Phys. 69, 3541 (1991).CrossRefGoogle Scholar
17. Kuzuhara, M., Nozaki, T. and Kamejima, T., J. Appl. Phys. 66, 5833 (1989).CrossRefGoogle Scholar
18. Koenig, U. and Sasse, E., J. Electrochem. Soc. 130, 950 (1983).CrossRefGoogle Scholar
19. Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).CrossRefGoogle Scholar
20. Kahen, K. B., Peterson, D. L., Rajeswaran, G. and Lawrence, D. J., Appl. Phys. Lett. 55, 651 (1989).CrossRefGoogle Scholar
21. Fleming, R. M., McWhan, D. B., Gossard, A. C., Wiegmann, W. and Logan, R. A., J. Appl. Phys. 51, 357 (1980).CrossRefGoogle Scholar
22. Schlesinger, T. E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).CrossRefGoogle Scholar
23. Tan, T. Y. and Gosele, U., Appl. Phys. Lett. 52, 1240 (1988).CrossRefGoogle Scholar
24. Ralston, J. D., O'Brien, S., Wicks, G. W. and Eastman, L. F., Appl. Phys. Lett. 52, 1511 (1988).CrossRefGoogle Scholar
25. Stevens, P. J., Whitehead, M., Parry, G. and Woodbridge, K., IEEE J. Quantum Electron. OE-24 2007 (1988).CrossRefGoogle Scholar
26. Ghisoni, M., Gibson, M., Rivers, A., Boyd, I. W., Parry, G. and Roberts, J. S., Electron. Lett. 2, 1058 (1990).CrossRefGoogle Scholar
27. Ralston, J. D., Schaff, W. J., Bour, D. P. and Eastman, L.F., Appl. Phys. Lett. 54 534 (1989).CrossRefGoogle Scholar
28. Ribot, H., Lee, K. W., Simes, R. J., Yan, R. H. and Coldren, L. A., Appl. Phys. Lett. 55, 672 (1989).CrossRefGoogle Scholar
29. Ghisoni, M., Stevens, P. J., Parry, G. and Roberts, J.S., Opt. & Quantum Electronics 23 S915 (1991).CrossRefGoogle Scholar
30. Koteles, E. S., Elman, B., Holmstrom, R. P., Melman, P., Chi, J. Y., Wen, X., Powers, J., Owens, D., Charbonneau, S. and Thewalt, M.L.W., Superlattice Microstruct. 5, 321 (1989).CrossRefGoogle Scholar
31. Whitehead, M., Rivers, A., Parry, G. and Roberts, J. S., Electron. Lett. 26, 1589 (1990).Google Scholar
32. Chi, J. Y., Wen, X., Koteles, E. S. and Elman, B., Appl. Phys. Lett. 55 855 (1989).CrossRefGoogle Scholar
33. Midwinter, J. E. and Guo, Y. L., Optoelectronics and Lightwave technology, (John Wiley & Sons, 1992), Chapter 3.Google Scholar
34. Miyazawa, T., Kagawa, T., Iwamura, H., Mikami, O. and Naganuma, M., Appl. Phys. Lett. 55, 828 (1989).CrossRefGoogle Scholar
35. Masum Choudhury, A. N. M., Melman, P., Silletti, A., Koteles, E. S., Foley, B. and Elman, B., IEEE Photon. Technol. Lett. 3, 817 (1991).CrossRefGoogle Scholar
36. Thornton, R. L., Mosby, W. J. and Paoli, T. L., J. Lightwave Technol. 6, 786 (1988).CrossRefGoogle Scholar
37. Midwinter, J. E. and Taylor, M. G., IEEE LCS Magazine, 40, May 1990.CrossRefGoogle Scholar
38. Zouganeli, P., Whitehead, M., Stevens, P. J., Rivers, A. W., Parry, G. and Roberts, J. S., IEEE Photon. Technol. Lett. 3, 733 (1991).CrossRefGoogle Scholar
39. Barnes, P., Woodbridge, K., Roberts, C., Stride, A. A., Rivers, A., Whitehead, M., Parry, G., Zhang, X., Staton-Bevan, A., Roberts, J.S. and Button, C., Opt. & Quantum Electronics 24 S177 (1992).CrossRefGoogle Scholar
40. Ghisoni, M., Parry, G., Pate, M., Hill, G. and Roberts, J. S., Jpn. J. Appl. Phys. 30, L1018 (1991).CrossRefGoogle Scholar