Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T13:07:02.328Z Has data issue: false hasContentIssue false

V2O5 Xerogels as Hosts For Conductive Polymers. Intercalative Polymerization of Aniline, Pyrrole and 2,2’-Bithiophene.

Published online by Cambridge University Press:  25 February 2011

Chun-Guey Wu
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824
Henry O. Marcy
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
Donald C. DeGroot
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
Carl R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208.
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing MI 48824
Get access

Abstract

Intercalative polymerization of aniline, pyrrole and 2,2’-bithiophene in vanadium oxide xerogels results in electrically conductive novel materials which are composed of alternating monolayers of metal-oxide and conductive polymers. The driving force for this intercalation is redox chemistry. The conductivity type in these materials is a function of the polymer/V2O5 xerogel ratio. Low ratios result in xerogel-based charge transport, while high ratios favor polymer-based charge transport properties. Chemical, spectroscopic and electrical data on the intercalative polymerization products of aniline, pyrrole and 2,2’-bithiophene with V2O5 xerogels are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) “Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM’88)” Aldissi, M. (ed) Synth. Met. 1989, 2729. references therein.Google Scholar
(b) Skotheim, T.A. (ed) in “Handbook of Conductive Polymers”, Marcel Dekker: New York, Vol. 1,2, 1986 Google Scholar
(c) Marks, T. J. Science, 1985, 227, 881889 Google Scholar
[2] (a) Kanatzidis, M. G.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.; Kannewurf, C. R. J. Am. Chem. Soc. 1987, 109, 37973799 Google Scholar
(b) Kanatzidis, M. G.; Marcy, H. O.; McCarthy, W. J.; Kannewurf, C. R.; Marks, T. J. Solid State Ionics 1989, 32 /33. 594608 Google Scholar
(c) Kanatzidis, M. G.; Hubbard, M.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.; Kannewurf, C. R. Synth. Met. 1989, 28, C89-C95 Google Scholar
[3] Wu, C.-G.; Kanatzidis, M.G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R. submitted for publicationGoogle Scholar
[4] (a) Kanatzidis, M.G.; Wu, C.-G.; Marcy, H.O.; Kannewurf, C.R. J. Am. Chem. Soc. 1989, 111, 41394141 Google Scholar
(b) Wu, C.-G.; Kanatzidis, M.G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R. Polym. Mat. Sci. Eng. 1989, 61, 969973.Google Scholar
(c) Wu, C.-G.; Kanatzidis, M.G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R. NATO Adavced Study Institute “Lower Dimensional Systems and Molecular Devices” Metzger, R. M., Ed. Plenum Press, Inc. 1989 in pressGoogle Scholar
[5] Wu, C.-G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R.; Kanatzidis, M.G. submitted for publicationGoogle Scholar
[6] Brandt, P.; Fischer, R. D.; Martinez, E.S.; Calleja, R. D. Angew. Chem. Int. Ed. Engl. 1989, 21, 12651266 Google Scholar
[7] (a) Bein, T.; Enzel, P. Synth. Met. 1989, 22, E163E168 Google Scholar
(b) Enzel, P.; Bein, T. J. Phys. Chem. 1989, 93, 62706272 Google Scholar
(c) Enzel, P.; Bein, T. J. Phys. Chem. 1989, 93, 62706272 Google Scholar
[8] Day, P. Phil. Trans. R. Soc. Lond. A 1985, 314, 145158 Google Scholar
[9] (a) Hagenmuller, P. in “Non-stoichiometric Compounds, Tungsten Bronzes, Vanadium Bronzes and Related CompoundsBevan, D.J.; Hagenmuller, P. (eds), Vol. 1, Pergamon Press, Oxford 1973 Google Scholar
[10] (a) Aldebert, P.; Baffler, N.; Legendre, J.-J.; Livage, J. Revue Chim. Min. 1982, 19, 485495.Google Scholar
(b) Masbah, H.; Tinet, D.; Crespin, M.; Erre, R.; Setton, R.; Van Damme, H. J. Chem. Soc, Chem. Commun. 1985, 935936 Google Scholar
(c) Gharbi, N.; Sanchez, C; Livage, J.; Lemerle, J.; Nejem, L.; Lefebvre, J. Inorg. Chem. 1982, 21, 27582765.Google Scholar
[11] (a) Bullot, J.; Gallais, O.; Gauthier, M.; Livage, , J. Appl. Phys. Lett. 1980, 26, 986988.Google Scholar
(b) Sanchez, C; Babonneau, F.; Morineau, R.; Livage, J.; Bullot, J. Philos. Mag. [Part] B 1983, 42, 279290.Google Scholar
(c) Bullot, J.; Cordier, P.; Gallais, O.; Gauthier, M.; Livage, J. J. Non-Cryst. Solids 1984, 61, 123134.CrossRefGoogle Scholar
[12] (a) Schärli, M.; Kiess, H.; Harbeke, G.; Berlinger, W.; Blazey, K. W.; Möller, K. A. Synth. Met. 1988, 22, 317336 Google Scholar
[13] Javadi, H.H.S.; Laversanne, R.; Epstein, A.J.; Kohli, R.K.; Scherr, E.M.; MacDiarmid, A.G. Synth. Met. 1989, 22, E439-E444 Google Scholar
[14] Wu, C.-G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R.; Kanatzidis, M.G. work in progressGoogle Scholar
[15] Although not critical for the data in curve (B), the data in curve (A) must be corrected for the contribution of the gold thermopower. This correction will shift the data by a small amount (ca. 1–2 μV depending on the temperature) toward more positive values, thus bringing the entire curve (A) on the positive scale of the plot.Google Scholar