Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:11:09.706Z Has data issue: false hasContentIssue false

Using Self-assembly and Selective Chemical Vapor Deposition for Precise Positioning of Individual Germanium Nanoparticles on Hafnia

Published online by Cambridge University Press:  01 February 2011

Shawn S Coffee
Affiliation:
coffee@che.utexas.edu, University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Wyatt A Winkenwerder
Affiliation:
ww5106@mail.utexas.edu, University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Scott K Stanley
Affiliation:
stanley@che.utexas.edu, University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Shahrjerdi Davood
Affiliation:
davood@mail.utexas.edu, University of Texas at Austin, Electrical and Computer Engineering, 1 University Station C0803, Austin, TX, 78712, United States
Sanjay K Banerjee
Affiliation:
banerjee@ece.utexas.edu, University of Texas at Austin, Electrical and Computer Engineering, 1 University Station C0803, Austin, TX, 78712, United States
John G Ekerdt
Affiliation:
ekerdt@che.utexas.edu, University of Texas at Austin, Chemical Engineering, 1 University Station C0400, Austin, TX, 78712, United States
Get access

Abstract

Germanium nanoparticle nucleation was studied in organized arrays on HfO2 using a SiO2 thin film mask with ~20-24 nm pores and a 6×1010 cm-2 pore density. Poly(styrene-b-methyl methacrylate) diblock copolymer was employed to pattern the SiO2 film. Hot wire chemical vapor deposition produced Ge nanoparticles using 4-19 monolayer Ge exposures. By seeding adatoms on HfO2 at room temperature before growth and varying growth temperatures between 725-800 K, nanoparticle size was demonstrated to be limited by Ge etching of SiO2 pore walls.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2 Tiwari, S., Rana, F., Chan, K., Shi, L., and Hanafi, H., Appl. Phys. Lett. 69, 1232 (1996).Google Scholar
3 International Technology Roadmap for Semiconductors 2004 update, SIA, San Jose, CA. 2004.Google Scholar
4 Yang, H. G., Shi, Y., Pu, L., Zhang, R., Shen, B., Han, P., Gu, S. L., and Zheng, Y. D., Appl. Surf. Sci. 224, 394 (2004).Google Scholar
5 Gupta, R., Yoo, W. J., Wang, Y. Q., Tan, Z., Samudra, G., Lee, S., Chan, D. S. H., Loh, K. P., Bera, L. K., Balasubramanian, N., and Kwong, D. L., Appl. Phys. Lett. 84, 4331 (2004).Google Scholar
6 Kim, D. W., Kim, T., and Banerjee, S. K. IEEE Trans. Electron Devices, 50, 1823 (2003).Google Scholar
7 Ng, T. H., Chim, W. K., Choi, W. K., Ho, V., Teo, L. W., Du, A. Y., and Tung, C. H. Appl. Phys. Lett., 84, 4385 (2004).Google Scholar
8 Wang, S. Y., Liu, W. L., Wan, Q., Dai, J. Y., Lee, P. F., Suhua, L., Shen, Q. W., Zhang, M., Song, Z. T., and Lin, C. L., Appl. Phys. Lett. 86, 113105 (2005).Google Scholar
9 Striemer, C. C., Krishnan, R., Fauchet, P. M., Tsybeskov, L., and Xie, Q. H., Nano letters 1, 643 (2001).Google Scholar
10 Omi, H. and Ogino, T., Thin Solid Films 369, 88 (2000).Google Scholar
11 Nitta, Y., Shibata, M., Fujita, K., and Ichikawa, M., Surf. Sci. 462, L587 (2000).Google Scholar
12 Stanley, S.K., Joshi, S.V., Banerjee, S.K., and Ekerdt, J.G., J. Vac. Sci. Tech. A 24, 78 (2006).Google Scholar
13 Coffee, S.S., Stanley, S.K., and Ekerdt, J.G., J. Vac. Sci. Tech. B, submitted (2006).Google Scholar
14 Mansky, P., Russell, T. P., Hawker, C. J., Mays, J., Cook, D. C., and Satija, S. K., Phys. Rev. Lett. 79, 237 (1997).Google Scholar
15 Mansky, P., Russell, T. P., Hawker, C. J., Pitsikalis, M., and Mays, J., Macromolecules 30, 6810 (1997).Google Scholar
16 Guarini, K. W., Black, C. T., Zhang, Y., Kim, H., Sikorski, E. M., and Babich, I. V., J. Vac. Sci. Tech. B 20, 2788 (2002).Google Scholar
17 Guarini, K. W., Black, C. T., and Yeuing, S. H. I., Adv. Mater. 14, 1290 (2002).Google Scholar
18 Chen, J., Yoo, W.J., Tan, Z., Wang, Y., and Chan, D. S. H., J. Vac. Sci. Tech. A 22, 1552 (2004).Google Scholar
19 Leach, W. T., Zhu, J. H., and Ekerdt, J. G., J. Cryst. Growth 243, 30 (2002).Google Scholar
20 Stanley, S.K., Coffee, S.S., and Ekerdt, J.G., App. Surf. Sci. 252, 878 (2005).Google Scholar
21 Leach, W. T., Zhu, J. H., and Ekerdt, J. G., J. Cryst. Growth 240, 415 (2002).Google Scholar