Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-09T23:52:56.096Z Has data issue: false hasContentIssue false

Using Linear Free Energy Relationship to Predict the Stability Constants of Aqueous Complexes of Metal-Organic Ligands

Published online by Cambridge University Press:  17 March 2011

Huifang Xu
Affiliation:
Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 87131, hfxu@unm.edu
Yifeng Wang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, ywang@sandia.gov
Get access

Abstract

The Sverjensky-Molling linear free energy relationship was originally developed to correlate the Gibbs free energies of formation of an isostrutural family of solid phases to the thermodynamic properties of aqueous cations. In this paper, we demonstrate that the similar relationship also exists between metal complexes and simple metal cations in aqueous solutions. We extend the Sverjensky-Molling relationship to predict the Gibbs free energies of formation or dissociation constants for a family of metal complexes with a given complexing ligand. The discrepancies between the predicted and experimental data are generally less than 1.5 kcal/mol (or one log unit for stability constants). The use of this linear free energy correlation can significantly enhance our ability to predict the speciation, mobility, and toxicity of heavy metals in natural environments. According the obtained results, Gibbs free energies of formation of cations (δG0f, Mn+) can be used as an indicator for the hardness/softness of a metal cation (acid). The higher negative value of a metal cation, the harder acid it will be. It is logical to postulate that the coefficient a*ML characterizes the softness of a complexing ligand (base).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

1. His, C. D. and Langmuir, D., Geochim. Cosmochim. Acta, 49, 19311941 (1985).Google Scholar
2. Collins, Y. E. and Stotzky, G., in Metal Ions and Bacteria. John Wiley & Sons, (1989).Google Scholar
3. Allen, H., Perdue, E. M. and Brown, D. S., Metals in Groundwater. Lewis (1993).Google Scholar
4. Sverjensky, D. A., Shock, E. L. and Helgeson, H. C., Geochim. Cosmochim. Acta, 61, 13591412 (1997).Google Scholar
5. Bethke, C. M., Geochemical Reaction Modeling. Oxford (1996).Google Scholar
6. Wells, P.R., Linear Free Energy Relationships. Academic, London, 116 pp (1968).Google Scholar
7. Hammett, L. P., Physical Organic Chemistry. McGill-Hill, New York (1970).Google Scholar
8. Exner, O., Correlation Analysis of Chemical Data. Plenum, New York, 275 pp (1988).Google Scholar
9. Sverjensky, D. A. and Molling, P. A., Nature, 356, 231234 (1992).Google Scholar
10. Xu, H., Wang, Y. and Barton, L. L., J. Nuclear materials, 273, 343346 (1999).Google Scholar
11. Robinson, R. A. and Stokes, R. H., Electrolyte Solutions, Butterworths (1968).Google Scholar
12. Shannon, R. D. and Prewitt, C. T., Acta Crystallogr., B25, 925946 (1969).Google Scholar
13. Shock, E. L. and Helgeson, H. C., Geochim. Cosmochim. Acta, 52, 20092036 (1988).Google Scholar
14. Shock, E. L., Sassani, D. C., Willis, M. and Sverjensky, A. D., Geochim. Cosmochim. Acta, 61, 907950 (1997).Google Scholar
15. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L. and Buttall, R. L., J. Phys. Ref. Data, 11, supplement 2:392 (1982).Google Scholar
16. Latimer, W. M., Oxidation Potentials, 2en ed. Princeton Hall, Princeton, N. J., 392 pp (1952).Google Scholar
17. Brookins, D.G., Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 176pp (1988).Google Scholar
18.OECD (Organization for economic co-operation and development), Compilation of selected thermodynamic data (1985).Google Scholar
19. Phillips, S. L., Hale, F. V., Silvester, L. F. and Siegel, M. D, Thermodynamic Tables for Nuclear Waste Isolation: Aqueous Solutions Database. Lawrence Berkeley Laboratory (1988).Google Scholar
20. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions. Ceblcor, Brussels (1974).Google Scholar
21. Turner, D. R., Whitfield, M. and Dickson, A. G., Geochim. Cosmochim. Acta, 45, 855881 (1981).Google Scholar
22. Sverjensky, A. D., Shock, E. L. and Helgeson, H. C., Geochim. Cosmochim. Acta, 61, 13591412 (1997).Google Scholar
23. Grenthe, I., Fuger, J., Kongs, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C. and Wanner, H., Chemical Thermodynamic of Uranium. North-Holland, Amsterdam, 715pp (1992).Google Scholar
24. Smith, R. M. and Martell, A. E., Critical Stability Constants, vol. 1, 2, 3, 4, 5 and 6. Plenum Press, New York (1974-1989).Google Scholar
25. Millero, F. J., Geochim. Cosmochim. Acta, 56, 31233132 (1992).Google Scholar
26. Wang, Y. and Xu, H., Geochim. et Cosmochim. Acta, 65, 15291543 (2001).Google Scholar
27. Martell, A. E. and Calvin, M., Chemistry of the Metal Chelate Compounds. Prentice Hall, Englewood Cliff, New Jersey (1952).Google Scholar
28. Schnitzer, M. and Hansen, E. H., Soil Science, 109, 333340 (1970).Google Scholar
29. Stevenson, F. J., Soil Sci. Soc. Am. J., 40, 665672 (1976).Google Scholar
30. Turner, D. R., Whitfield, M. and Dickson, A. G., Geochim. et Cosmochim. Acta, 45, 855881 (1981).Google Scholar