Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T06:36:54.619Z Has data issue: false hasContentIssue false

The Use of Xanthates as Precursors for the Deposition of Nickel Sulfide Thin Films by Aerosol Assisted Chemical Vapour Deposition

Published online by Cambridge University Press:  15 February 2011

P.L. Musetha
Affiliation:
Department of Chemistry, University of Zululand, Private Bag X 1001, KwaDlangezwa,3886, South Africa.
N. Revaprasadu
Affiliation:
Department of Chemistry, University of Zululand, Private Bag X 1001, KwaDlangezwa,3886, South Africa.
M.A Malik
Affiliation:
The School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL. E-mail – nrevapra@pan.uzulu.ac.za
P. O'Brien
Affiliation:
The School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL. E-mail – nrevapra@pan.uzulu.ac.za
Get access

Abstract

Nickel sulphide (NiS) thin films have been deposited on glass by aerosol assisted chemical vapour deposition(AACVD) using single source precursors of the type, ([Ni(S2COR2)2], R = C2H5 or C3H7). TGA analyses showed that the precursors are highly volatile, making them suitable for AACVD studies. As deposited NiS films were polycrystalline as confirmed by XRD. The films have been characterised by xray diffraction (XRD), scanning electron microscopy (SEM), and Energy dispersive analysis of x-rays (EDAX).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kriven, W.M., Mater. Sci. Eng. A., 127, 249 (1990).Google Scholar
2. Samsonov, G.V., Drozdova, S.V., The Sulphides, Metallurgiya, Moscow, 1972.Google Scholar
3. Rao, C.N.R., Pisharody, K.P.R., Prog. Solid State Chem., 10, 207 (1976).Google Scholar
4. O'Brien, P., Park, J.H., Waters, J., Thin Solid Films, 431, 502 (2003).Google Scholar
5. Cheon, J., Talaga, D.S., Zink, J. I., Chem. Mater., 9, 1208 (1997).Google Scholar
6. Pramanik, P., Biswas, S., J. Solid State Chem., 65,145 (1986).Google Scholar
7. Uplane, M.M., Patil, P.S., Uplane, M.D., Lokhande, C.D., Bull. Electrochem. 11, 569 (1995).Google Scholar
8. Anuar, K., Zulkarnain, Z., Saravanan, N., Zuriyatina, A., Sharin, R., Materials Science, 10, 157 (2004).Google Scholar
9. Yu, S.H., Yoshimura, M., Adv. Funct. Mater., 12, 277 (2002).Google Scholar
10. Bither, T.A., Bouchard, R.J., Cloud, W.H., Donohue, P.C., Siemons, W.J., Inorg. Chem., 7, 2208 (1968).Google Scholar
11. Bhuiyan, N.H., Taher, A., Bangladesh J. Sci. Ind. Res., 11, 29 (1976).Google Scholar
12. Ghezelbash, A., Sigman, M. B., Korgel, B. A., Nanoletters, 4, 537 (2004).Google Scholar
13. Tràvníéek, Z., Pastorek, R., Ŝindeláø, Z. and Kliéka, R., Polyhedron, 4, 3627 (1995).Google Scholar
14. Rao, S.R., Xanthate and related compounds.; Dekker: New York, 1971.Google Scholar
15. Sceney, C.G.., Hill, J.O.; Magee, R.J.; Thermo. Chim, Acta., 6, 111(1973).Google Scholar
16.Joint Committee on Powder Diffraction Standards, Diffraction Data File, No. 12–0041, PCPDS International Centre for Diffraction Data, Pensylvania, 1991.Google Scholar