Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T05:46:22.378Z Has data issue: false hasContentIssue false

The Use of Mechanical Property Measurements to Characterize Gels and Gelation Processes

Published online by Cambridge University Press:  25 February 2011

Y. Yang
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
N. Ichise
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Z. Li
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
Q. Yuan
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
J. E. Mark
Affiliation:
Department of Chemistry and the Polymer Research Center, The University of Cincinnati, Cincinnati, OH 45221-0172
E. K. M. Chan
Affiliation:
Department of Chemistry, Florida State University, Tallahassee, FL 32306
R. G. Alamo
Affiliation:
Department of Chemistry, Florida State University, Tallahassee, FL 32306
L. Mandelkern
Affiliation:
Department of Chemistry, Florida State University, Tallahassee, FL 32306
Get access

Abstract

There are a variety of gels (highly swollen solids) that are of considerable interest to polymer scientists, materials scientists, and ceramists. One type consists of typical organic polymers such as polyethylene or polystyrene, in networks which are formed by means of physical cross links, such as crystallites or physical aggregates. Such gels are thermoreversible in that liquefaction occurs upon heating. Another type consists of chain-like structures permanently bonded into covalent networks. These permanently branched and cross-linked chains can be either organic (phenol-formaldehyde resins, epoxies, etc.), or inorganic [silica (SiO2), titania (TiO2), zirconia (ZrO2), etc.] Both the organic and inorganic covalent types have been used to prepare aerogels, and the inorganic ones are now much used to prepare high-tech ceramics by the new sol-gel route.

In the case of the thermoreversible, organic polymer gels, moduli can be measured as a function of concentration, temperature, and structural characteristics of the polymer (molecular weight, molecular weight distribution, and nature and degree of any chain branching). Such equilibrium results give information on the nature of the gels, including the influence of morphology, and the presence of dangling-chain irregularities. Measurements carried out as a function of time, for example, on polyethylene homopolymers and copolymers, can give information about their gelation kinetics.

In the case of the ceramic materials, the evolution of the shear modulus with time is very useful in establishing induction times, rates of gelation, and aging effects. Correlation of such information with results of scattering studies can give much insight into the nature of the sol-gel process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca NY, 1953.Google Scholar
(2) Flory, P. J. Faraday Disc. Chem. Soc. 1974, 57, 7.Google Scholar
(3) Lemstra, P. J.; Smith, P. Br. Polym. J. 1980, 12, 212.Google Scholar
(4) Smith, P.; Lemstra, P. J.; Booij, H. C. J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 877.Google Scholar
(5) Okabe, M.; Isayama, M.; Matsuda, H. J. Appl. Polym. Sci. 1985, 30, 4735.Google Scholar
(6) Russo, P. S.; Siripanyo, S.; Saunders, M. J.; Karasz, F. E. Macromolecules 1986, 19, 2856.Google Scholar
(7) Domszy, R. C.; Alamo, R.; Edwards, C. O.; Mandelkern, L. Macromolecules 1986, 19, 310.Google Scholar
(8) Koltisko, B.; Keller, A.; Litt, M.; Baer, E.; Hiltner, A. Macromolecules 1986, 19, 1207.Google Scholar
(9) Sawatari, E.; Okumura, T.; Matsuo, M. Polym. J. 1986, 18, 741.Google Scholar
(10) Reversible Polymeric Gels and Related Systems; Russo, P. S., Ed.; American Chemical Society: Washington, DC, 1987.Google Scholar
(11) Clark, A. H.; Ross-Murphy, S. B. Adv. Polym. Sci. 1987, 83, 57.Google Scholar
(12) Chan, E. K. M.; Mandelkern, L. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1987, 28(1), 130.Google Scholar
(13) Ulrich, D. R. CHEMTECH 1988, 18, 242.Google Scholar
(14) McKenna, G. B.; Guenet, J.-M. Polym. Commun. 1988, 29, 58.Google Scholar
(15) Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D.; Ulrich, D. R., Eds.; Wiley: New York, 1988.Google Scholar
(16) Matsuda, H.; Kashiwagi, R.; Okabe, M. Polym. J. 1988, 20, 189.Google Scholar
(17) Ulrich, D. R. J. Non-Cryst. Solids 1998, 100, 174.CrossRefGoogle Scholar
(18) McKenna, G. B.; Guenet, J.-M. J. Polym. Sci., Polym. Phys. Ed. 1999, 26, 267.Google Scholar
(19) LeMay, J. D. Preprints, Div. Polym. Mat., Am. Chem. Soc. 1989, 60, 695.Google Scholar
(20) Physical Networks. Polymers and Gels; Burchard, W.; Ross-Murphy, S. B., Eds.; Elsevier: London, 1990.Google Scholar
(21) Djabourov, M. Polym. Int. 1991,25, 135.Google Scholar
(22) Nguyen, H. P.; Delmas, G. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1991,32(3), 421.Google Scholar
(23) Plazek, D. J.; Chay, I.-C. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1991,32(3), 433.Google Scholar
(24) Jackson, C. J.; McKenna, G. B. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1991, 32(3), 439.Google Scholar
(25) Mark, J. E.; Erman, B. Rubberlike Elasticity. A Molecular Primer; Wiley-Interscience: New York, 1988.Google Scholar
(26) Li, Z.; Mark, J. E.; Chan, E. K. M.; Mandelkem, L. Macromolecules 1989, 22, 4273.Google Scholar
(27) Eisenberg, A.; King, M. Ion-Containing Polymers; Academic Press: New York, 1977.Google Scholar
(28) Better Ceramics Through Chemistry; Brinker, C. J.; Clark, D. E.; Ulrich, D. R., Eds.; North Holland: New York, 1984.Google Scholar
(29) Better Ceramics Through Chemistry IV; Zelinski, B. J. J.; Brinker, C. J.; Clark, D. E.; Ulrich, D. R., Eds.; Materials Research Society: Pittsburgh, 1990.Google Scholar
(30) LeMay, J. D.; Hopper, R. W.; Hrubesh, L. W.; Pekala, R. W. MRS Bulletin 1990, 15, 19.CrossRefGoogle Scholar
(31) Saunders, P. R.; Ward, A. G. In Proceedings of the Second International Congress of Rheology, Butterworths Sci. Pub.: London, 1953.Google Scholar