Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-02T08:25:08.275Z Has data issue: false hasContentIssue false

Understanding the Behavior and Stability of Some Uranium Mineral Colloids

Published online by Cambridge University Press:  11 February 2011

Carol J. Mertz
Affiliation:
Chemical Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
Jeff A. Fortner
Affiliation:
Chemical Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
Yifen Tsai
Affiliation:
Chemical Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
Get access

Abstract

Colloids are believed to be a dominant mode of transport for radionuclides in the unsaturated zone and thus the characterization of the attributes of the colloids is important for understanding and predicting subsurface transport. As uranium-based spent nuclear fuels will be prevalent at the high-level waste repository at Yucca Mountain, we have examined the colloidal properties of a mixture of two uranium minerals. This paper presents results of analyses on colloidal suspensions of meta-schoepite, (UO2)4)(OH)6·5H2O, and UO2+x, in 10 mM uranyl nitrate or J-13 groundwater (from Yucca Mountain, NV). A suite of techniques was used to characterize the colloids. The colloids detected by dynamic light scattering in the 10 mM uranyl nitrate solution exhibited a mean size of ∼200 nm and a colloid concentration on the order of 1012 particles/L. Likewise, large 200 nm colloids of meta-schoepite and UO2+x were dominant in the transmission electron microscopy analyses. The colloids detected in the J-13 groundwater exhibited a bimodal distribution; large globular 100–200 nm UO2+x colloids and needle-like colloids of meta-schoepite were observed (with extremely fine microstructure exhibited for the meta-schoepite colloids). Electrophoretic mobility measurements of the meta-schoepite and UO2+x suspension in 10 mM uranyl nitrate indicated that the colloids are not stable at pH values less than or equal to five. While at pH values ≥ 5.5, the colloids of meta-schoepite and UO2+x in 10 mM uranyl nitrate are stable, exhibiting zeta potentials of -30 to -60 mV. The results in this paper show that stable colloidal suspensions of uranium substrate colloids are possible under aqueous, oxidizing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., and Thompson, J. L., Nature 397, 56 (1999).Google Scholar
2. Ebert, W. L. and Bates, J. K., Nuclear Technology, 104, 372 (1993).Google Scholar
3. Buck, E. C. and Bates, J. K., Applied Geochemistry, 14, 635 (1999).Google Scholar
4. Geckeis, H., Grambow, B., Loida, A., Luckscheiter, B., Smailos, E., and Quinones, J., Radiochem. Acta, 82, 123 (1998).Google Scholar
5. Finn, P. A., Buck, E. C., Gong, M., Hoh, J. C., Emery, J. W., Hafenrichter, L. D., and Bates, J. K., Radiochem. Acta, 66/67, 189 (1994).Google Scholar
6. Finn, P. A., Bates, J. K., Hoh, J. C., Emery, J. W., Hafenrichter, L. D., Buck, E. C., and Gong, M., in Scientific Basis for Nuclear Waste Management XVII, edited Barkatt, A., Van Konynenburg, R. A. (Mat. Res. Soc. Symp. Proc. 333, Livermore, CA 1994) p. 399407.Google Scholar
7. Short, S. A., Lowson, R. T., and Ellis, J., Geochimica et Cosmochimica Acta, 52, 2555 (1988).Google Scholar
8. Miekeley, N., Coutinho de Jesus, H., Porto da Silveira, C. L., and Degueldre, C., J. Geochem. Explor., 45, 409 (1992).Google Scholar
9. Ho, C. H. and Miller, N. H., J. Colloid Interface Sci., 113, 971 (1986).Google Scholar
10. Efurd, D. W., Runde, W., Banar, J. C., Janecky, D. R., Kaszuba, J. P., Palmer, P. D., Roensch, F. R., and Tait, C. D., Environ. Sci. Technol. 32, 3893 (1998).Google Scholar
11. Fortner, J. A., Mertz, C. J., Wolf, S. F., and Jemian, P. R., “Natural Groundwater Colloids from the USGS J-13 Well in Nye County, NV: A Study Using SAXS and TEM,” Mat. Res. Soc. Symp. Proc., 2002 MRS Meeting (this proceedings).Google Scholar
12. Provencher, S. W., CONTIN, User's Manual, Version 2, EMBL-DA07, Euro. Molec. Biol. Lab., Heidelburg, Germany (March 1984).Google Scholar
13. Stock, R. S. and Ray, W. H., J. Polymer Sci.: Polym. Phys. Ed., 23, 1393 (1985).Google Scholar
14. Harding, S. E., Sattelle, D. B. and Bloomfield, V. A., Eds. Laser Light Scattering in Biochemistry, Royal Society of Chemistry, Cambridge (1992).Google Scholar
15. Duke Scientfic Corp, Palo Alto, CA, Certificate for Nanosphere size standards, Cat. # 3030A (1996).Google Scholar
16. Wilkinson, W. D., in Uranium Metallurgy, Vol. 2, (Interscience Pubs., New York, NY 1962), p. 841.Google Scholar
17. Pugh, R. J., Colloid & Polym. Sci., 252, 400 (1974).Google Scholar
18. Pugh, R. J., in Colloid Chemistry in Mineral Processing, edited by Laskowski, J. S. and Ralston, J., (Elsevier, Amsterdam 1992), p. 271.Google Scholar