Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T07:17:58.283Z Has data issue: false hasContentIssue false

Ultrafast dynamics of the Itinerant Antiferromagnet UNiGa5

Published online by Cambridge University Press:  26 February 2011

Ee Min Elbert Chia
Affiliation:
elbert@lanl.gov, Los Alamos National Laboratory, MST-CINT, MS G756, Los Alamos, NM, 87545, United States, 505-665-3550, 505-665-9030
H. J. Lee
Affiliation:
haelee@lanl.gov, Los Alamos National Laboratory, United States
Namjung Hur
Affiliation:
nhur@lanl.gov, Los Alamos National Laboratory, United States
E. D. Bauer
Affiliation:
edbauer@lanl.gov, Los Alamos National Laboratory, United States
T. Durakiewicz
Affiliation:
tomasz@lanl.gov, Los Alamos National Laboratory, United States
R. D. Averitt
Affiliation:
raveritt@lanl.gov, Los Alamos National Laboratory, United States
J. L. Sarrao
Affiliation:
sarrao@lanl.gov, Los Alamos National Laboratory, United States
A. J. Taylor
Affiliation:
ttaylor@lanl.gov, Los Alamos National Laboratory, United States
Get access

Abstract

Time-resolved photoinduced reflectivity data were measured for the itinerant antiferromagnet UNiGa5 (TN ≈ 85 K) from room temperature down to 10 K. The relaxation time τ increases sharply near TN, which we attribute to the opening of a spin gap. In addition, at the lowest temperatures τ increases with a T1 dependence, which is similar to that shown by the heavy fermion YbAgCu4, but with no blocking of electron-phonon scattering within the DOS peak. The transient amplitude increase at TN with a temperature dependence that is consistent with the appearance of a spin gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hegger, H. et al. , Phys. Rev. Lett. 84, 4986 (2000).10.1103/PhysRevLett.84.4986Google Scholar
2. Petrovic, C. et al. , Europhys. Lett. 53, 354 (2001).10.1209/epl/i2001-00161-8Google Scholar
3. Thompson, J. D. et al. , J. Magn. Magn. Mater. 226–230, 5 (2001).10.1016/S0304-8853(00)00602-8Google Scholar
4. Sarrao, J. L. et al. , Nature 420, 297 (2002).10.1038/nature01212Google Scholar
5. Wastin, F. et al. , J. Phys. Condens. Matter 15, S2279 (2003).Google Scholar
6. Kaneko, K. et al. , Phys. Rev. B 68, 214419 (2003).Google Scholar
7. Demsar, J. et al. , Phys. Rev. Lett. 91, 027401 (2003).10.1103/PhysRevLett.91.027401Google Scholar
8. Demsar, J. et al. , unpublished.Google Scholar
9. Groenveld, R. H. M. et al. , Phys. Rev. B 51, 11433 (1995).10.1103/PhysRevB.51.11433Google Scholar
10. Ahn, K. H. et al. , Phys. Rev. B 69, 045114 (2004).Google Scholar
11. Han, S. G. et al. , Phys. Rev. Lett. 65, 2708 (1990).Google Scholar
12. Demsar, et al. , Europhys. Lett. 45, 381 (1999).Google Scholar
13. Demsar, J. et al. , Phys. Rev. Lett. 83, 800 (1999).10.1103/PhysRevLett.83.800Google Scholar
14. Demsar, J. et al. , Phys. Rev. B 63, 054519 (2001).10.1103/PhysRevB.63.054519Google Scholar
15. Tokiwa, Y. et al. , J. Phys. Soc. Jpn. 70, 1744 (1999).Google Scholar
16. Noguchi, S. and Okuda, K., J. Magn. Magn. Mater. 104–107, 57 (1992).Google Scholar
17. Tokiwa, Y. et al. , J. Phys. Soc. Jpn. 71, 845 (2002).10.1143/JPSJ.71.845Google Scholar
18. Durakiewicz, T. et al. , unpublished.Google Scholar
19. Fazekas, P., “Lecture Notes on Electron Correlation and Magnetism”, Series in Modern Condensed Matter Physics – Vol. 5 (World Scientific 1999), p.371.Google Scholar
20. Moreno, N. O. et al. , Phys. Rev. B 72, 035119 (2005).10.1103/PhysRevB.72.035119Google Scholar
21. Mihailovic, D. and Demsar, J., in Spectroscopy of Superconducting Materials, edited by Faulques, Eric, ACS Symposium Series 730 (The American Chemical Society, Washington D.C., 1999), p.230.10.1021/bk-1999-0730.ch016Google Scholar
22. Demsar, J. et al. , Phys. Rev. B 59, 1497 (1999).Google Scholar