Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T12:10:03.464Z Has data issue: false hasContentIssue false

Type-II InAs/InGaSb Superlattices on Compliant GaAs Substrates

Published online by Cambridge University Press:  10 February 2011

G. J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
K. Mahalingam
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
A. Saxler
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
R. Linville
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
F. Szmulowicz
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
M. L. Seaford
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
D. H. Tomich
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate (AFRL/MLPO), Wright-Patterson AFB, OH 45433-7707
Chih-Hsiang Lin
Affiliation:
Applied Optoelectronics Inc., Sugar Land, TX 77478
C. H. Kuo
Affiliation:
Applied Optoelectronics Inc., Sugar Land, TX 77478
W. Y. Hwang
Affiliation:
Applied Optoelectronics Inc., Sugar Land, TX 77478
Get access

Abstract

Type-II InAs/GaInSb superlattices of different designs have been grown by molecular beam epitaxy on wafer bonded InGaAs on GaAs, and on standard GaSb substrates. The extremely thin (∼100Å) InGaAs layer is loosely bonded to the GaAs substrate and serves as a compliant layer for subsequent epitaxy of a larger lattice constant material. The effects of these substrates on the optical, electrical, and structural properties of the superlattice were studied. The superlattices grown on bonded substrates were found to have uniform layers, with broader x-ray linewidths than superlattices grown on GaSb. The photoresponse results for the superlattices on the bonded 2 inch diameter substrates, with the InGaAs compliant layer, were not as favorable as early work on similar, smaller area, bonded substrates. However, refinements to the wafer bonding process to eliminate microvoids between the bonded layers will provide higher quality superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D. L. and Mailhiot, C., J. Appl. Phys. 62, 2545 (1987).Google Scholar
2. Miles, R. H., Chow, D. H., and Hamilton, W. J., J. Appl. Phys. 71, 211 (1992).Google Scholar
3. Johnson, J. L., Samoska, L. A., Gossard, A. C., Merz, J. L., Jack, M. D., Chapman, G. R., Baumgratz, B. A., Kosai, K., and Johnson, S. M., J. Appl. Phys. 80, 1116 (1996).Google Scholar
4. Fuchs, F., Weimer, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., Appl. Phys. Lett. 71, 3251 (1997).Google Scholar
5. Campbell, I. H., Sela, I., Laurich, B. K., Smith, D. L., Bolognesi, C. R., Samoska, L. A., Gossard, A. C., and Kroemer, H., Appl. Phys. Lett. 59, 846 (1991).Google Scholar
6. Youngdale, E. R., Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Grein, C. H., Young, P. M., Ehrenreich, H., Miles, R. H., and Chow, D. H., Appl. Phys. Lett. 64, 3160 (1994).Google Scholar
7. Miles, R. H., Chow, D. H., Schulman, J. N., and McGill, T. C., Appl. Phys. Lett. 57, 801 (1990).Google Scholar
8. Chow, D. H., Miles, R. H., Nieh, C. W., and McGill, T. C., J. Cryst. Growth 111, 683 (1991).Google Scholar
9. Waterman, J. R., Shanabrook, B. V., Wagner, R. J., Yang, M. J., Davis, J. L., and Omaggio, J. P., Semicond. Sci. Technol. 8, S106 (1993).Google Scholar
10. Miles, R. H., Chow, D. H., and Hamilton, W. J., J. Appl. Phys. 71, 211 (1992).Google Scholar
11. Ejeckam, F. E., Seaford, M. L., Lo, Y.-H., Hou, H. Q., and Hammons, B. E., Appl. Phys. Lett. 71, 776 (1997).Google Scholar
12. Brown, G. J., Szmulowicz, F., Linville, R., Saxler, A., Mahalingam, K., Lin, C.-H., Kuo, C. H. and Hwang, W. Y., IEEE Photonics Letts. (to be published).Google Scholar
13. Lin, C.-H., Murry, S. J., Zhang, D., Chang, P. C., Zhou, Y., Pei, S. S., Malin, J. I., Felix, C. L., Meyer, J. R., Hoffman, C. A., and Pinto, J. F., J. Crystal Growth 175, 955 (1997).Google Scholar
14. Brown, G. J., Ahoujja, M., Szmulowicz, F., Mitchel, W. C., and Lin, C.-H., Mater. Res. Soc. Symp. Proc. 484, 129 (1998).Google Scholar
15. Seaford, M. L., Tomich, D. H., Eyink, K. G., Brown, G. J., Grazulis, L., Mahalingam, K., Kuo, C. H., Hwang, W. Y. and Lin, C.-H., J. Electronic Matls. 29, No. 7 (2000).Google Scholar