Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T00:53:22.440Z Has data issue: false hasContentIssue false

A Two-Step Low-Temperature Process For A P-N Junction Formation Due To Hydrogen Enhanced Thermal Donor Formation In P-Type Czochralski Silicon

Published online by Cambridge University Press:  10 February 2011

R. Job
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
W. R. Fahrner
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
N. M. Kazuchits
Affiliation:
Belarussian State University, Minsk, 220050, Belarus
A. G. Ulyashin
Affiliation:
Belarussian State Polytechnical Academy, Minsk, 220027, Belarus.
Get access

Abstract

The incorporation of hydrogen into standard p-type Czochralski (Cz) silicon (≥1 Ωcm) by a 110 MHz plasma treatment at 260°C leads to the formation of an n-type region due to hydrogen enhanced thermal donor (TD) formation in hydrogenated regions of the wafer, if a subsequent annealing in air is applied at 450°C. Spreading resistance probe (SRP) and light beam induced current (LBIC) measurements were used for the experimental analysis. The p-n junction depth, i. e. the counter doping by TDs, depends on the initial doping level of the p-type substrate, and therefore on the post-hydrogenation annealing time. The penetration of the n-type region into the wafer bulk is driven by a rapid hydrogen diffusion. The essential process for a TD generation is the creation of metastable hydrogen molecular species around 260°C and their decay at 450°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Job, I. R., Borchert, D., Bumay, Y.A., Fahmer, W.R., Grabosch, G., Khorunzhii, I.A., Ulyashin, A.G., MRS Symp. Proc. Series 469, 101 (1997).Google Scholar
2. Ulyashin, A.G., Bumay, Y.A., Job, R., Grabosch, G., Borchert, D., Fahrner, W.R., Diduk, A.Y., Solid State Phenomena 57–58, 189 (1997).Google Scholar
3. Ulyashin, A.G., Bumay, Y.A., Job, R., Fahmer, W.R., Appl. Phys. (A) (1998), in press.Google Scholar
4. Brown, A.R., Claybourn, M., Murray, R., Nandhra, P.S., Newman, R.C., Tucker, J.H., Semicond. Sci. Technol. 3, 591 (1988).Google Scholar
5. Murray, R., Brown, A.R., Newman, R.C., Mater. Sci. Eng. B. 4, 299 (1990).Google Scholar
6. Stein, H.J., Hahn, S.K., Appl. Phys. Lett., 56, 63 (1990).Google Scholar
7. Stein, H.J., Hahn, S., J. Electrochem. Soc. 142, 1242 (1995).Google Scholar
8. Stein, H.J., Hahn, S.K., J. Appl. Phys. 75, 3477 (1994).Google Scholar
9. Shimura, F., Oxygen in Silicon, Academic Press, New York (1994).Google Scholar
10. Estreicher, S.K., Mat. Sci. Eng. R 14, 319 (1995).Google Scholar
11. Murray, R., Physica B 170, 115 (1991).Google Scholar
12. Pearton, S.J., Corbett, J.W., Stavola, M., Hydrogen in Crystalline Semiconductors, Springer- Verlag, Berlin, Heidelberg, New York (1992).Google Scholar
13. Myers, S.M., Baskes, M.I., Birnbaum, H.K., Corbett, J.W., DeLeo, G.G., Estreicher, S.K., Haller, E.E., Jena, P., Johnson, N.M., Kirchheim, R., Pearton, S.J., Stavola, M.J., Rev. Mod. Phys. 64, 559 (1992).Google Scholar
14. Van Wieringen, A., Warmholtz, N., Physica 22, 849 (1956).Google Scholar
15. Pankove, J.I., Johnson, N.M., Hydrogen in Semiconductors, Academic Press, New York (1991).Google Scholar
16. Mathiot, D., Phys. Rev. B 40, 5867 (1989).Google Scholar