Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T13:38:12.787Z Has data issue: false hasContentIssue false

Two-Dimensional Ordering of Ion Damaged Graphite

Published online by Cambridge University Press:  25 February 2011

B.S. Elman
Affiliation:
Center for Materials Science and Engineering; Department of Physics;
S. Dresselhaus
Affiliation:
Center for Materials Science and Engineering; Department of Physics; Department of Electrical Engineering and Computer Science;
G. Braunstein
Affiliation:
Department of Physics;
G. Dressflhaus
Affiliation:
Francis Bitter National Magnet Laboratory;Massachusetts Institute of Technology, Cambridge, MA 02139;
T. Venkatesan
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974, USA
B. Wilkens
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974, USA
J.M. Gibson
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974, USA
Get access

Abstract

Post implantation annealing of ion-damaged, highly oriented pyrolytic graphite (HOPG) has been studied by Raman spectroscopy, the ion channeling technique and Transmission Electron Microscopy. Complementary information obtained by these methods provides confirmation for the completion of the first step of graphitization of iondamaged graphite at annealing temperatures of ~2300°C. This is manifested by the formation of carbon planes with two dimensional ordering but no correlation in the third (c-axis) dimension.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marchand, A. and Pacault, A., Nouveau Traite de Chemie Minerale, vol. VIII, No. 1, 457 (1968);Google Scholar
Fishbach, D., Chemistry and Physics of Carbon, vol. 7, Walker, P.L. Jr., ed. (Marcel Dekker, New York 1971), p. 1.Google Scholar
2. Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W. and Mazurek, H., Phys. Rev. B24, 1027 (1981).Google Scholar
3. Elman, B.S., Shayegan, M., Dresselhaus, M.S., Mazurek, H. and Dresselhaus, G., Phys. Rev. B25, 4142 (1982).Google Scholar
4. Chieu, T.C., Dresselhaus, M.S. and Endo, M., Phys. Rev. B26, 5867 (1982).Google Scholar
5. Lespade, P., Al-Jishi, R., and Dresselhaus, M.S., Carbon 20, 427 (1982);Google Scholar
Marchand, A., Lespade, P. (private communication);Google Scholar
Marchand, A., Lespade, P. and Covzi, M., Extended Abstracts of the 15th Biennial Conference on Carbon University of Pennsylvaniap. 282(1981).Google Scholar
6. Mayer, J.W., Eriksson, L. and Davies, J.A., Ion Implantation in Semiconductors, (Academic, New York 1970).Google Scholar
7. Chu, W.-K., Mayer, J.W., Nicolet, M.-A., Backscattering Spectrometry, (Academic Press, New York 1978), and references therein.Google Scholar
8. Feldman, L.C., Mayer, J.W., Picraux, S.T., Materials Analysis by Ion Channeling, (Academic Press, New York 1982).Google Scholar
9. Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Venkatesan, T. and Wilkens, B., Extended Abstracts of the 16th Biennial Conference of Carbon San Diego, CA 1983p. 459;Google Scholar
Elman, B.S., Braunstein, G., Dresselhaus, M.S., Dresselhaus, G., Venkatesan, T. and Wilkens, B., (to be published).Google Scholar
10. Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 533, 1126 (1970).Google Scholar
11. Elman, B.S., Hom, M., Maby, E.W. and Dresselhaus, M.S., Intercalated Graphite, Dresselhaus, M.S., Dresselhaus, G., Fischer, J.E., Moran, M.J., eds. (North-Holland Elsevier, New York 1983), p. 341.Google Scholar
12. Venkatesan, T., Elman, B.S., Braunstein, G., Dresselhaus, M.S. and Dresselhaus, G. (to be published).Google Scholar
13. Ref. 7, p. 247.Google Scholar
14. Kakinoki, J., Katada, K., Tanawa, T. and Ino, T., Acta. Cryst. 13, 171 (1960).Google Scholar