Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T00:41:28.719Z Has data issue: false hasContentIssue false

Two Step O2/N2O Plasma Annealing for the Reduction of Leakage Current in Amorphous Ta2O5 Films

Published online by Cambridge University Press:  10 February 2011

W.S. Lau
Affiliation:
Chartered Semiconductor Manufacturing Ltd., R&D Advanced Technology Department, 60 Woodlands Industrial Park D St.2, Singapore 738406, Republic of Singapore. E-mail: lauws@csm.st.com.sg
M.T. Chandima Perera
Affiliation:
Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685, Republic of Singapore
T. Han
Affiliation:
Lam Research Corporation, 4650 Cushing Parkway, Fremont, California 94538, USA
N. P. Sandler
Affiliation:
Lam Research Corporation, 4650 Cushing Parkway, Fremont, California 94538, USA
C.H. Tung
Affiliation:
Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685, Republic of Singapore
T.T. Sheng
Affiliation:
Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685, Republic of Singapore
P.K. Chu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
T.C. Chong
Affiliation:
Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
Get access

Abstract

As deposited tantalum pentoxide (Ta2O5) films are amorphous. The films will remain amorphous after O2 or N2O plasma annealing at low temperature. High temperature annealing will produce polycrystalline films where grain boundaries can generate leakage current. Previously, we have shown that N2O plasma annealing is superior to O2 plasma annealing in terms of leakage current reduction for AI/Ta2O5/Si capacitors. However, for TiN/Ta2O5/Si capacitors, the leakage current tends to be higher at low bias voltage for N2O plasma annealing compared to O2 plasma annealing. By adding an 02 plasma annealing step and then comparing TiN/Ta2O5/Si capacitors with two step O2/N2O plasma annealing with respect to similar structures with two step O2/O2 plasma annealing, it can be easily seen that TiN/Ta2O5/Si capacitors with two step O2/N2O plasma annealing have lower leakage current compared to similar structures with two step O2/O2 plasma annealing throughtout the voltage range tested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kaga, T., Ohkura, M., Murai, F., Yokoyama, N. and Takeda, E., J. Vac. Sci. Technol. B 13, 2329 (1995).10.1116/1.588068Google Scholar
2 Sun, S. C. and Chen, T. F., Extended Abstracts of SSDM (1994) p. 655. Google Scholar
3 Sun, S. C. and Chen, T. F., IEDM Technical Digest (1994) p. 333.Google Scholar
4 Sun, S. C. and Chen, T. F., IEEE Electron Device Lett. 17, 355 (1996).10.1109/55.506365Google Scholar
5 Lau, W. S., Khaw, K. K. and Sandler, N. P., Extended Abstracts of SSDM (1995) p. 515.Google Scholar
6 Lau, W. S., Khaw, K. K., Qian, P. W., Sandler, N. P. and Chu, P. K., Jpn. J. Appl. Phys. 35, 2599 (1996).10.1143/JJAP.35.2599Google Scholar
7 Lau, W. S., Qian, P. W., Sandier, N. P., McKinley, K. A. and Chu, P. K., Jpn. J. Appl. Phys. 36, 661 (1997).10.1143/JJAP.36.661Google Scholar
8 Sun, S. C. and Chen, T. F., IEEE Trans. Electron Device 44, 1027 (1997).10.1109/16.585562Google Scholar
9 Aoyama, T., Saida, S., Okayama, Y., Fujisaki, M., Imai, K. and Arikado, T., J. Electrochem. Soc. 143, 977 (1996).10.1149/1.1836568Google Scholar
10 Park, H. S., Baek, Y. K., Kim, J. C., Choi, S. H. and Oh, K. H., Extended Abstracts of SSDM (1992) p. 524.Google Scholar
11 Kamiyama, S., Suzuki, H., Watanabe, H., Sakai, A., Kimura, H. and Mizuki, J., J. Electrochem. Soc. 141, 1246 (1994).10.1149/1.2054904Google Scholar
12 Lau, W. S., Perera, M. T. Chandima, Babu, P., Ow, A. K., Han, T., Sandler, N. P., Tung, C. H., Sheng, T. T. and Chu, P. K., Jpn. J. Appl. Phys. 37, L435 (1998).10.1143/JJAP.37.L435Google Scholar
13 Kamiyama, S., Saeki, T., Mori, H. and Numasawa, Y., IEDM Tech. Dig. (1991), p. 827.Google Scholar
14 Lau, W. S., Tan, T. S., Sandier, N. P. and Page, B. S., Jpn. J. Appl. Phys. 34, 757 (1994).10.1143/JJAP.34.757Google Scholar
15 Lau, W. S., Zhong, L., Lee, A., See, C. H., Han, T., Sandier, N. P. and Chong, T. C., Appl. Phys. Lett. 71, 500 (1997).10.1063/1.119590Google Scholar
16 McKinley, K. A. and Sandier, N. P., Thin Solid Films 290–291, 440 (1996).10.1016/S0040-6090(96)08975-4Google Scholar
17 Matsui, M., Oka, S., Yamagishi, K., Kuroiwa, K. and Tarui, Y., Jpn. J. Appl. Phys. 27, 506 (1988).10.1143/JJAP.27.506Google Scholar
18 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K. and Tarui, Y., J. Electrochem. Soc. 139, 320 (1992).10.1149/1.2069193Google Scholar
19 Tanimoto, S., Shichi, Y., Kuroiwa, K. and Tarui, Y., Extended Abstracts of SSDM (1993) p. 859.Google Scholar