Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T08:14:56.038Z Has data issue: false hasContentIssue false

Tuning of Hidden Order and Superconductivity in URu2Si2 by Applied Pressure and Re Substitution

Published online by Cambridge University Press:  26 February 2011

Nicholas P. Butch
Affiliation:
nbutch@physics.ucsd.edu, University of California, San Diego, Dept. of Physics and IPAPS, 9500 Gilman Drive, La Jolla, CA, 92093-0360, United States
Jason R. Jeffries
Affiliation:
jjeffri@physics.ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093-0360, United States
Benjamin T. Yukich
Affiliation:
byukich@ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093-0360, United States
M. Brian Maple
Affiliation:
mbmaple@physics.ucsd.edu, University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093-0360, United States
Get access

Abstract

Single crystals of URu2-xRexSi2 have been grown via the Czochralski technique. Detailed electrical transport studies under pressure on single crystals of URu2Si2 confirm that the zero-temperature critical field is suppressed smoothly towards an extrapolated critical pressure of 15 kbar, which also corresponds to the accepted critical pressure of the hidden order phase. Improving on previous work on polycrystalline samples, studies of single crystals of URu2-xRexSi2 have provided more precise tracking of the suppression of both the hidden order phase at low doping and the ferromagnetic phase at intermediate Re concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlabitz, W., Baumann, J., Pollit, B., Rauchschwalbe, U., Mayer, H. M., Ahlheim, U., and Bredl, C. D., Z. Phys. B 62, 171 (1986).Google Scholar
2. Maple, M. B., Chen, J. W., Dalichaouch, Y., Kohara, T., Rossel, C., Torikachvili, M. S., McElfresh, M. W., and Thompson, J. D., Phys. Rev. Lett. 56, 185 (1986).Google Scholar
3. Palstra, T. T. M., Menovsky, A. A., van den Berg, J., Dirkmaat, A. J., Kes, P. H., Nieuwenhuys, G. J., and Mydosh, J. A., Phys. Rev. Lett. 55, 2727 (1985).Google Scholar
4. Broholm, C., Kjems, J. K., Buyers, W. J. L., Matthews, P., Palstra, T. T. M., Menovsky, A. A., and Mydosh, J. A., Phys. Rev. Lett. 58, 1467 (1987).Google Scholar
5. Some recent examples: Kiss, A. and Fazekas, P., Phys. Rev. B 71, 054415 (2005); V. P. Mineev and M. E. Zhitomirsky, Phys. Rev. B 72, 014432 (2005); V. Tripathi, P. Chandra, and P. Coleman, J. Phys.: Condens. Matter 17, 5285 (2005); C. M. Varma and L. Zhu, Phys. Rev. Lett. 96, 036405 (2006).Google Scholar
6. Kim, K. H., Harrison, N., Jaime, M., Boebinger, G. S., and Mydosh, J. A., Phys. Rev. Lett. 91, 256401 (2003).Google Scholar
7. Dalichaouch, Y., Maple, M. B., Torikachvili, M. S., and Giorgi, A. L., Phys. Rev. B 39, 2423 (1989).Google Scholar
8. Dalichaouch, Y., Maple, M. B., Guertin, R. P., Kuric, M. V., Torikachvili, M. S., and Giorgi, A. L., Physica B 163, 113 (1990).Google Scholar
9. Dalichaouch, Y., Maple, M. B., Chen, J. W., Kohara, T., Rossel, C., Torikachvili, M. S., and Giorgi, A. L., Phys. Rev. B 41, 1829 (1990).Google Scholar
10. Bauer, E. D., Zapf, V. S., Ho, P.-C., Butch, N. P., Freeman, E. J., Sirvent, C., and Maple, M. B., Phys. Rev. Lett. 94, 046401 (2005).Google Scholar
11. McElfresh, M. W., Thompson, J. D., Willis, J. O., Maple, M. B., Kohara, T., and Torikachvili, M. S., Phys. Rev. B 35, 43 (1987).Google Scholar
12. Amitsuka, H., Sato, M., Metoki, N., Yokoyama, M., Kuwahara, K., Sakakibara, T., Morimoto, H., Kawarazaki, S., Miyako, Y., and Mydosh, J. A., Phys. Rev. Lett. 83, 5114 (1999).Google Scholar
13. Matsuda, K., Kohori, Y., Kohara, T., Kuwahara, K., and Amitsuka, H., Phys. Rev. Lett. 87, 087203 (2001).Google Scholar
14. Uemura, S., Motoyama, G., Oda, Y., Nishioka, T., and Sato, N. K., J. Phys. Soc. Jpn. 74, 2667 (2005).Google Scholar
15. Bourdarot, F., Bombardi, A., Burlet, P., Enderle, M., Flouqet, J., Lejay, P., Kernavanois, N., Mineev, V. P., Paolasini, L., Zhitomirsky, M. E., and Fåk, B., Physica B 359–361, 986 (2005).Google Scholar
16. Pfleiderer, C., Mydosh, J. A., and Vojta, M., Phys. Rev. B 74, 104412 (2006).Google Scholar
17. Torikachvili, M. S., Rebelsky, L., Motoya, K., Shapiro, S. M., Dalichaouch, Y., and Maple, M. B., Phys. Rev. B 45, 2262 (1992).Google Scholar