Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T21:17:43.060Z Has data issue: false hasContentIssue false

Trichloride-Hydride Vpe: A Hybrid Regrowth Process for III-V Epitaxial Heterostructures

Published online by Cambridge University Press:  28 February 2011

M. A. Digiuseppe
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
V. D. Mattera Jr
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. Marchut
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. T. Ekholm
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Filipe
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. N. Buckley
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. J. Peticolas
Affiliation:
AT&T Bell Laboratories, Reading, PA 19604
Get access

Abstract

InP based alloy epitaxial heterostructures currently are being developed as light sources and detectors for optoelectronic applications. High performance requirements at very high frequency operation have resulted in the need for complex device structures which can require one or more epitaxial steps. As a result, hybrid growth techniques combining LPE with either hydride VPE, trichloride VPE or metal organic CVD previously have been used to grow emitter and photodetector heterostructures. In this paper, a hybrid trichloride-hydride VPE growth technique for complex heterostructures is described. Trichloride VPE which is particularly suited for certain regrowth applications because of its inherent in-situ etching capability has been successfully utilized to regrow low-doped, high purity InP on InP/InGaAs/InGaAsP heterostructures grown by hydride VPE. Transmission electron microscopy has shown that the regrowth interface is free of major defects and dislocations. P-diffused APD mesa devices obtained from these structures were operated with fields at the regrowth interface as high as 3.8 × 105V/cm. Primary dark currents were observed as low as 1.4nA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See for instance Johnston, W. D. Jr, DiGiuseppe, M. A. and Wilt, D. P., AT &T Technical Journal 68 (1), 53 (January/February 1989).Google Scholar
2. Kitamura, M., Seki, M., Yamazuchi, M., Mito, I., Kobayashi, Ke. and Kobayashi, Ko., Electron. Lett. 19, 841 (1983).Google Scholar
3. Temkin, H., Dolan, G. J., Logan, R. A., Kazarinov, R. F., Olsson, N. A. and Henry, C. H., Appl. Phys. Lett. 46 (2), 105 (1985).Google Scholar
4. Temkin, H., Dolan, G. J., Olsson, N. A., Henry, C. H., Logan, R. A., Kazarinov, R. F. and Johnson, L. F., Appl. Phys. Lett. 45 (11), 1178 (1984).Google Scholar
5. Kishi, Y., Yasuda, K., Yamazaki, S., Nakajima, K., and Umebu, I., Electron. Lett. 20 (4), 165 (1984).Google Scholar
6. Yasuda, K., Kishi, Y., Shirai, T., Mikawa, T., Yamazaki, S., and Kaneda, T., Electron. Lett. 20 (4), 58 (1984).Google Scholar
7. Kobayashi, M., Yamazaki, S. and Kaneda, T., Appl. Phys. Lett. 45 (7), 759 (1984).Google Scholar
8. Kano, H., Oe, K., Ando, S. and Sugiyama, K., Japan J. Appl. Phys. 17, 1887 (1978).Google Scholar
9. Landany, I., Smith, R. T. and Magee, C. W., J. Appl. Phys. 52, 6064 (1981).CrossRefGoogle Scholar
10. DiGiuseppe, M. A., Chin, A. K., Chin, B. H., Lourenco, J. A. and Camlibel, I., J. Crystal Growth 67, 1 (1984).CrossRefGoogle Scholar
11. Ng, W., Hong, C. S., Manasevit, H. and Dapkus, P. D., Appl. Phys. Lett. 39, 188 (1981).Google Scholar
12. Westbrook, L. D., Nelson, A. W. and Dix, C., Electron. Lett. 19, 423 (1983).Google Scholar
13. Koch, T. L., Coldren, L. A., Bridges, T. J., Burkhardt, E. G., Corvini, P. J., Wilt, D. P. and Miller, B. I., Electron. Lett. 20(21), 856 (1984).Google Scholar
14. Koch, T. L., Bridges, T. J., Burdkardt, E. G., Logan, R. A., Johnson, L. F., Kazarinov, R. F., Yen, R. T., Coldren, L. A., Corvini, P. J., Linke, R. A., Tsang, W. T. and Wilt, D. P., Appl. Phys. Lett. 47 (1), 12 (1985).Google Scholar
15. Temkin, H., Panish, M. B., Logan, R. A. and Abeles, J. H., Appl. Phys. Lett. 46 (9), 811 (1985).CrossRefGoogle Scholar
16. Logan, R. A., Temkin, H., Blaha, J. P. and Strege, K. E., Appl. Phys. Lett. 51 (18), 1407 (1987).Google Scholar
17. Tsang, W. T., Bowers, J. E., Burkhardt, E. G., Ditzenberger, J. A., Wilt, D. P., Dutta, N. K., Napholtz, S. G., Shen, T. M., Turi, Y. and Logan, R. A., J. Appl. Phys. 63 (4), 1218 (1988).Google Scholar
18. DiGiuseppe, M. A., Temkin, H., Peticolas, L. and Bonner, W. A., Appl. Phys. Lett. 43, 906 (1983).Google Scholar
19. DiGiuseppe, M. A., Chin, A. K., Ermanis, F. and Peticolas, L. J., J. Crystal Growth 75, 311 (1985).Google Scholar
20. Matsuhima, Y., Akiba, S., Sakai, K., Kushiro, Y., Noda, Y. and Utaka, K., Electron. Lett. 18, 945 (1982).Google Scholar
21. Campbell, J. C., Dentai, A. G., Holden, W. S. and Kasper, B. L., Electron Lett. 19, 818 (1983).Google Scholar
22. Cox, H. M., Prior, A. S. and Keramidas, V. G., Inst. Phys. Conf. Serv. No. 65, Chapter 2 (1983) p. 11.Google Scholar
23. Cox, H. M., Koza, M. A., Keramidas, V. G. and Young, M. S., J. Crystal Growth 73, 523 (1985).CrossRefGoogle Scholar