Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T19:30:03.011Z Has data issue: false hasContentIssue false

The Tribooxidative Behavior of Rutile-Forming Substrates

Published online by Cambridge University Press:  28 February 2011

Michael N. Gardos*
Affiliation:
Hughes Aircraft Company, El Segundo, CA 90245
Get access

Abstract

An assessment of the literature indicates that in high temperature air not only titanium,but also titanium carbide (TiC) and titanium nitride (TiN) react to form rutile, the mostthermodynamically stable polymorph of titanium dioxide. It has been recently hypothesizedthat slightly oxygen-deficient rutile (TiO2-x) behaves as a low shear strength, lubricious oxide.

Although the oxidation kinetics-driven reaction of the less stable TiC results in thickeroxide layers than on TiN, the most prevalent film morphology and oxide structure on both TiC and TiN are the same as those generated on the much softer Ti and its alloys. In mostcases of static oxidation and tribooxidation at high temperatures, the oxide layers grow in extremely thin (1 to 5 μm) sheets, which periodically delaminate from the substrate. The kinetics of delamination are highly dependent on substrate properties. These sheets form an array of loosely cohering (under static conditions) or tightly cohering (under triboconditions) scales, similar to the morphology of multilayered pastry dough. The most thermodynamically stable [(110)] cleavage planes of rutile tend to align preferentially in the plane of the peeling flakes, but without any azimuthal order. It is suggested that rutile can be rendered lubricious (a) by this unique structure, (b) by keeping its shear strength minimal by intrinsic (i.e., environment-independent) control of the number of oxygen vacancies within the oxide layers, and (c) by tailoring the load-carrying substrate used to form the rutile films in-situ. Accordingly, the removal rate ofrutile and the friction coefficient provided by the oxide/substrate tribosystem may be further controlled by taking advantage of (a) the high, but still significantly different hardnesses and ideal habit plane orientation of the TiC and TiN mother matrix underlays, and (b) the differences in the reaction kinetics of layered oxide growth on these highly oriented, hard metal coating matrices at elevated temperatures, in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gardos, M. N., STLE Tribology Trans., 31, pp. 427436 (1988).CrossRefGoogle Scholar
2. Gardos, M. N., Hong, H.-S. and Winer, W. O., paper to be submitted for presentation and publication at the 1989 STLE Annual Meeting, May 1-4, 1989, Atlanta, GA.Google Scholar
3. Hamdy, M. M. and Waterhouse, R. B., Wear, 71, pp. 237248 (1981).CrossRefGoogle Scholar
4. Hamdy, M. M. and Waterhouse, R. B., Fatigue Eng. Mat. Struct., 5, pp. 267274 (1982).CrossRefGoogle Scholar
5. Hong, H. and Winer, W. O., paper submitted for publication in the Trans. ASME, J. of Tribology, ASME Preprint No. 88-Trib-48.Google Scholar
6. Wahlbeck, P. G. and Gilles, P. W., J. Am. Cer. Soc., 49, pp. 180183 (1966).CrossRefGoogle Scholar
7. James, R. and Catlow, C. R. A., J. de Physique (Paris), C7, 38(12), pp. C732 (1977).Google Scholar
8. Wallwork, G. R. and Jenkins, A. E., J. Electrochem. Soc., 106 pp. 1014 (1959).CrossRefGoogle Scholar
9. Stringer, J., Acta. Metall., 8, pp. 758766 (1960).CrossRefGoogle Scholar
10. Hurlen, T., J. Inst. Met., B2, pp. 128136 (1960-1961).Google Scholar
11. Flower, H. M. and Swann, P. R., Acta Metall., 22, pp. 13391347 (1974).CrossRefGoogle Scholar
12. Rosa, C. J., Oxid. Metals, 17, pp. 359369 (1982).CrossRefGoogle Scholar
13. Chaze, A. M. and Coddet, C., Oxid. Metals, 27, pp. 120 (1987).CrossRefGoogle Scholar
14. Bertrand, G., Jarraya, K. and Chaix, J. M., Oxid. Metals, 21, pp. 119 (1983).CrossRefGoogle Scholar
15. Lefort, P., Desmaison, J. and Billy, M., J. Less-Common Metals, 60, pp. 1124 (1978).CrossRefGoogle Scholar
16. Unnam, J., Shenoy, R. N. and Clark, R. K., Oxid. Metals, 26, pp. 231252 (1986).CrossRefGoogle Scholar
17. Benninghoven, A.et al, Appl. Phys. Lett., 32, pp. 341343 (1977).CrossRefGoogle Scholar
18. Strong, R. L. and Erskine, J. L., J. Vac. Sci. Technol., A3, pp. 14281431 (1985).CrossRefGoogle Scholar
19. Flower, H. M. and Swann, P. R., Acta. Metall. (USA), 22, pp. 13391347 (1974).CrossRefGoogle Scholar
20. Wittberg, T. N. and Wolf, J. D., J. Vac. Sci. Technol. A1, pp. 475478 (1983).CrossRefGoogle Scholar
21. McLemore, R. L., NASA Tech Briefs, 6(4), p. 405 (1982).Google Scholar
22. Rosa, C. J., Oxid. Metals, 17, pp. 359369 (1982).CrossRefGoogle Scholar
23. Sarrazin, P. and Coddett, C., Corr. Sci., 14, pp. 8389 (1974).CrossRefGoogle Scholar
24. Whittle, D. P., Oxid. Metals, 4, pp. 171179 (1972).CrossRefGoogle Scholar
25. Beranger, G. and Coddet, C., J. Microsc. Spectrosc. Electron. (Fr.), 5, pp. 793814 (1980).Google Scholar
26. Wahl, G., Thin Solid Films, 107, pp. 417426 (1983).CrossRefGoogle Scholar
27. Reichle, M. and Nickl, J. J., J. Less-Common Metals, 27, pp. 213236 (1972).CrossRefGoogle Scholar
28. Fischer, T. E. and Sexton, M. D., in Physical Chemistry of the Solid State: Applications to Metals and Their Compounds, Lacombe, P., ed. (Elsevier, Amsterdam, 1984), pp. 97106.Google Scholar
29. Simon, D.et al, in Titanium and Titanium Alloys: Scientific and Technological Aspects, Vol. 2 (Plenum Press, New York, 1982), p. 1062.Google Scholar
30. Wright, I. G., Nagarajan, V. and Stringer, J., Oxid. Metals, 25, pp. 75199 (1986).CrossRefGoogle Scholar
31. Kang, C. T., Pettit, F. S. and Birks, N., Met. Trans. A., 13A, pp. 17851803 (1987).CrossRefGoogle Scholar
32. Krause, H. and Scholten, J., Trans. ASME, J. Lubr. Technol., 100, pp. 199207 (1978).CrossRefGoogle Scholar
33. Hong, H., Hochman, R. F. and Quinn, T. J. F., STLE Tribology Trans., 31, pp. 7175 (1988).CrossRefGoogle Scholar
34. Quinn, T. F. J., Tribol. Int., 16, pp. 157-171 and 305315 (1983).CrossRefGoogle Scholar
35. Mori, S., U. of Iwata, Morioka, Japan, (private communication).Google Scholar
36. Gardos, M. N., STLE Tribology Trans., 31, pp. 214227 (1988).CrossRefGoogle Scholar
37. Matthewson, M. J., J. Mech. Phys. Solids, 29, pp. 89113 (1981).CrossRefGoogle Scholar
38. Lancaster, J. K. and Wade, D. J., in Proc. 3rd. Int. Conf., Solid Lubr., Aug. 7-10, 1984, ASLE SP-14, pp. 296307.Google Scholar
39. Solecki, R. and Ohgushi, Y., Trans. ASME, J. Tribology, 106, pp. 396404 (1984).CrossRefGoogle Scholar
40. King, R. B., and O'Sullivan, T. C., Int. J. Solids Structures, 23, pp. 581597 (1987).CrossRefGoogle Scholar
41. Klokholm, E., IBM J. Res. Develop., 31, pp. 585591 (1987).CrossRefGoogle Scholar
42. Sproul, W. D., Surface and Coatings Tech., 33, pp. 133139 (1987).CrossRefGoogle Scholar
43. Boelens, S. and Veltrop, H., Surface and Coatings Tech., 33, pp. 6371.CrossRefGoogle Scholar
44. Hallig, J. and Arnell, R. D., Wear, 100 pp. 367380 (1984).CrossRefGoogle Scholar
45. Kahveci, A. I. and Welsch, G. E., Scripta Metall., 20, pp. 12871290 (1986).CrossRefGoogle Scholar
46. Horvath, E., and Klemme, K. E., in Proc. 3rd European Conf. on CVD (Euro-CVD III), Apr. 16-18, 1980, Hintermann, H. E., ed., LSRH, Neuchatel, Switzerland, pp. 218229.Google Scholar
47. Stewart, R. W. and Cutler, I. B., J. Am. Cer. Soc., 50, pp. 176181 (1967).CrossRefGoogle Scholar
48. Humphrey, G. L., J. Am. Chem. Soc., 73, pp. 22612263 (1951).CrossRefGoogle Scholar
49. Handbook of Chemistry and Physics, 64th Ed., CRC Press, Inc., Boca Raton, FL, 1983-1984.Google Scholar
50. Wittmer, M., Noser, J. and Melchior, H., J. Appl. Phys., 52, pp. 66596664 (1981).CrossRefGoogle Scholar
51. , Anon., Ceramic Source, 2, p. 273 (1987).Google Scholar
52. Pollard, F. H. and Woodward, P., Trans. Faraday Soc., 46, pp. 190199 (1950).CrossRefGoogle Scholar
53. Kelley, K. K., U. S. Bur. Mines Bull., 407, p. 41 (1937).Google Scholar
54. Tkachenko, Yu. G.et al, Poroschkovaya Metallurgiya (Soviet Powder Metallurgy), 6(198), pp. 4551 (1979).Google Scholar
55. Miracle, D. B. and Lipsitt, H. A., J. Am. Cer. Soc., 66, pp. 592597 (1983).CrossRefGoogle Scholar
56. Bars, J.-P, Met. Trans. A., 14A, pp. 15371543 (1983).CrossRefGoogle Scholar
57. Mumtaz, A. and Class, W. H., J. Vac. Sci. Technol., 20, pp. 345348 (1982).CrossRefGoogle Scholar
58. Vogelsang, E.et al, J. Appl. Phys., 61, pp. 46064611 (1987).CrossRefGoogle Scholar
59. Ivanovsky, A. L.et al, J. Less-Common Metals, 78, pp. 117 (1981).CrossRefGoogle Scholar
60. Schoen, J. M. and Denker, S. P., Phys. Rev., 184, pp. 864873 (1969).CrossRefGoogle Scholar
61. Tofighi, A., Lebugle, A., and Montel, G., C. R. Acad. Sci. Paris, Serie C, 285, pp. 1719 (1977).Google Scholar
62. Desmaison, J., Lefort, P., and Billy, M., Oxid. Metals, 12, pp. 203222 (1979).CrossRefGoogle Scholar
63. Desmaison, J., Lefort, P., and Billy, M., Oxid. Metals, 12, pp. 505517 (1979).CrossRefGoogle Scholar
64. Suni, I.et al, J. Electrochem. Soc.: Solid-State Sci. & Technol., 130, pp. 12101214 (1983).CrossRefGoogle Scholar
65. Jansen, S. A. and Hoffman, R., Tech. Report No. 34, Contract No. N00014-82-K-0576, Lab. of Atomic and Solid State Phys., Cornell Univ., Ithaca, N. Y., July 1987.Google Scholar
66. Muelhoff, L., J. Appl. Phys., 60, pp. 25582563 (1986).CrossRefGoogle Scholar
67. Wu, L. C. and Greene, J. E., J. Appl. Phys., 50, pp. 49664971 (1979).CrossRefGoogle Scholar
68. Platonov, G. L.et al, Poroschkovaya Metallurgiya (Soviet Powder Metallurgy), 19(8), pp. 554558 (1981).CrossRefGoogle Scholar
69. Lee, C. W. and Chun, J. S., in Proc. 8th Int. Conf, on CVD, Vol. 81-7, Electrochem. Soc., Inc., Pennington, NJ, 1981, pp. 563572.Google Scholar
70. Igasaki, Y.et al, J. Appl. Phys. (Jap.), 17, pp. 8596 (1978).CrossRefGoogle Scholar
71. Sproul, W. D., Thin Solid Films, 107, pp. 141147 (1983).CrossRefGoogle Scholar
72. Telama, A., MAntyla, T. and Kettunen, P., J. Vac., Sci. Technol., A4, pp. 29112914 (1986).CrossRefGoogle Scholar
73. Sue, J. A. and Troue, H. H., Surf. and Coatings Tech., 33, pp. 169181 (1987).CrossRefGoogle Scholar
74. Lattand, L., Ciosmak, D., and Bertrand, G., Mater. Sci. Monogr., 28A -React. Solids, 1, pp. 5773 (1985).Google Scholar
75. Ashbee, K. H. G. and Smallman, R. E., Phil. Mag., 7, pp. 19331940 (1962).CrossRefGoogle Scholar
76. Stewart, R. W. and Cutler, I. B., J. Am. Cer. Soc., 50, pp. 176181 (1967).CrossRefGoogle Scholar
77. Sarrazin, P.et al, J. Less-Common Metals, 59, pp. 111117 (1978).CrossRefGoogle Scholar
78. Dunbar, L. E.et al, 2nd AIAA/ASME Thermophysics and Heat Transf. Conf., May 24-26, 1978, Palo Alto, CA, AIAA Paper 78-867.Google Scholar
79. Lu, C. Y. and Tsai, N. S., J. Appl. Phys., 59, 35743576 (1986).CrossRefGoogle Scholar
80. Pfeffer, R.et al, J. Appl. Phys., 51, pp. 42264229 (1982).CrossRefGoogle Scholar
81. Kiehle, A. J.et al, J. Amer. Cer. Soc., 58, pp. 1720 (1975).CrossRefGoogle Scholar
82. Singhal, S.C., J. Amer. Cer. Soc., 59, pp. 8182 (1976).CrossRefGoogle Scholar
83. Yates, D. E., James, R. O. and Healy, T. W., Trans. Faraday Soc. I., 76, pp. 18 (1980).CrossRefGoogle Scholar
84. Tomizawa, H. and Fischer, T. E., ASLE Trans., 29, pp. 481488 (1986).CrossRefGoogle Scholar
85. Iyengar, R. D., Zeitschrift fUr Phys. Chem. - Neue Folge, 89, pp. 325328 (1974).CrossRefGoogle Scholar
86. Komvopoulos, K., Saka, N., and Suh, N. P., Trans. ASME, J. Tribology, 109, pp. 223231 (1987).CrossRefGoogle Scholar
87. Habig, K.-H., J. Vac. Sci. Technol., A4, pp. 28322843 (1986).CrossRefGoogle Scholar
88. Ng, L. and Naerheim, Y., paper presented at the Advanced Earth-to-Orbit Propulsion Tech. Conf., Huntsville, AL, [Rockwell International (Rocketdyne Div.), Canoga Park, CA], May 1986.Google Scholar
89. Gray, S., Proc. Cer. Eng. & Sci., 6, pp. 965975 (1985).CrossRefGoogle Scholar
90. Lankford, J., Wei, W. and Kossowsky, R., J. Mat. Sci., 22, pp. 20692078 (1987).CrossRefGoogle Scholar
91. Wei, W. and Lankford, J., J. Mat. Sci., 22, pp. 23872396 (1987).CrossRefGoogle Scholar
92. Wei, W., Lankford, J. and Kossowksy, R., Mat. Sci. Eng., 90, pp. 307315 (1987).CrossRefGoogle Scholar
93. Baldoni, J. G., The Carbide and Tool J., 12, pp. 2629 (1980).Google Scholar
94. Kramer, B. M. and Suh, N. P., Trans. ASME, J. Eng. for Industry, 102, pp. 303309 (1980).CrossRefGoogle Scholar