Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T22:25:22.004Z Has data issue: false hasContentIssue false

Tribomechanical Properties of Ion Implanted Metals

Published online by Cambridge University Press:  25 February 2011

Irwin L. Singer*
Affiliation:
Naval Research Laboratory, Chemistry Division, Code 6170, Washington, D.C. 20375
Get access

Abstract

A review of tribomechanical studies supported by surface analysis finds ion implantation capable of increasing the sliding wear resistance of ion implanted metals in two ways. First, it can reduce friction by modifying the surface composition (e.g. Ti+ into steel) or by promoting the growth of low friction oxide layers (e.g. N into Ti). Second, it can modify the subsurface composition and structure to resist fracture and debris formation. These modifications harden the surface, change its work-hardening behavior and/or increase residual stresses. Microindentation hardness measurements indicate that many but not all of the wear resistant surfaces are hardened by implantation; thus, surface hardness is a contributing but not necessarily a controlling factor in wear resistance. These mechanisms of wear reduction and the chemical and microstructural modifications responsible for them are discussed. Evidence for wear reduction through the migration of N during wear is critically reviewed. It is concluded that the principal benefit of ion implantation is to prevent or delay the formation of wear particles, thereby changing the wear mode during run-in and permitting metals to reach load-carrying capacities up to their elastic limits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bowden, F.P. and Tabor, D., Friction and Lubrication of Solids (Oxford Press, Oxford). Part I (1950); Part II (1964).Google Scholar
2. Czichos, H., Tribology (Elsevier, Amsterdam, 1978).Google Scholar
3. Buckley, D.H., Surface Effects in Adhesion, Friction, Wear and Lubrication (Elsevier, Amsterdam, 1981).Google Scholar
4. Suh, N.P., The Delamination Theory of Wear, Wear 44 (1977).Google Scholar
5. Fundamentals of Friction and Wear of Materials, Rigney, D.A., ed. (ASM, Metals Park, OH, 1981).Google Scholar
6. Glardon, R. and Finnie, I., ASME Trans 103, 333340 (1981).Google Scholar
7. Hills, D.A. and Ashelby, D.W., Wear, 75, 221240 (1982).Google Scholar
8. Hsu, K.L., Ahn, T.M. and Rigney, D.A., Wear 60, 13 (1980).Google Scholar
9. Ho, J.W., Noyan, C., Cohen, J.B., Khanna, V.D. and Eliezer, Z., Wear 84, 183202 (1983).Google Scholar
10. Richardson, R.C.D., Wear 10, 353382 (1967).Google Scholar
11. Pethica, J.B.: in Ion Implantation into Metals, Ashworth, V., ed. (Pergamon Press, Oxford, 1982) pp 147156.Google Scholar
12. Bolster, R.N. and Singer, I.L. Appl. Phys. Letts. 17, 327 (1980).Google Scholar
13. Bolster, R.N. and Singer, I.L. ASLE Trans. 24, 526 (1981).Google Scholar
14. Carosella, C.A., Singer, I.L., Bowers, R.C. and Gossett, C.R., in: Ion Implantation Metallurgy, Preece, C.M. and Hirvonen, J.K., eds. (AIME, Warrendale, PA 1980) p. 103.Google Scholar
15. Singer, I.L., Carosella, C.A. and Reed, J.R., Nucl. Instrum. Methods 182/183, 923 (1981).Google Scholar
16. Singer, I.L. and Jeffries, R.A., J. Vac. Sci. Technol. A1. 317 (1983).Google Scholar
17. Fischer, T.E., Luton, M.J., Williams, J.M., White, C.W. and Appleton, B.R., ASLE Trans. 26, 466 (1983).Google Scholar
18. Singer, I.L. and Jeffries, R.A., “Friction, Wear and Deformation...”, these proceedings.Google Scholar
19. Dillich, S.A. and Singer, I.L., Thin Solid Films 108, 219227 (1983).Google Scholar
20. Dillich, S.A., Boister, R.N. and Singer, I.L., these proceedings.Google Scholar
21. Singer, I.L. and Barlak, T.M., Appl. Phys. Lett. 43, 457459 (1983).Google Scholar
22. Follstaedt, D.M., Yost, F.G. and Pope, L.E., these proceedings.Google Scholar
23. Singer, I.L., Appl. Surface Sci. 18, (1984).Google Scholar
24. Pope, L.E., Yost, F.G., Follstaedt, D.M., Knapp, J.A. and Picraux, S.T., in: Wear of Materials - 1983, Ludema, K.C., ed. (ASME, New York, NY 1983), 280.Google Scholar
25. Pope, L.E., Yost, F.G., Follstaedt, D.M., Picraux, S.T. and Knapp, J.A., these proceedings.Google Scholar
26. Pethica, J.B., Hutchings, R. and Oliver, W.C., Nucl. Instrum. Methods., 209/210, 9951000 (1983).Google Scholar
27. Oliver, W.C., Hutchings, R., Pethica, J.B., Singer, I.L. and Hubler, G.K., these proceedings.Google Scholar
28. Singer, I.L., Bolster, R.N. and Carosella, C.A., Thin Solid Films, 73, 283 (1980).Google Scholar
29. Oliver, W.C., Hutchings, R. and Pethica, J.B., Metall. Trans, A (to be published).Google Scholar
30. Yost, F.G., Picraux, S.T., Follstaedt, D.M, Pope, L.E., and Knapp, J.A., Thin Solid Films, 107 287295 (1983).Google Scholar
31. Herman, H., Nucl. Instrum. Methods, 182/183, 887898 (1981).Google Scholar
32. Allen, C., Ball, A. and Protheroe, B.E. Wear, 74, 287305 (1981).Google Scholar
33. Vardiman, R.G., Bolster, R.N. and Singer, I.L., MRS Symp. 7, 269 (1982).Google Scholar
34. Vardiman, R.G. and Singer, I.L., Material Letts. 2, 150154 (1983).Google Scholar
35. Follstaedt, D.M., Yost, F.G., Pope, L.E., Picraux, S.T. and Knapp, S.A., Appl. Phys. Lett. 43, 358360 (1983).Google Scholar
36. Singer, I.L. and Murday, J.S., J. Vac. Sci. Technol. 17, 327329 (1980).Google Scholar
37. Bone, W.M., Colton, R.J., Singer, I.L. and Gossett, C.R., J. Vac. Sci. Technol. A2 (1984).Google Scholar
38. Shephard, S.R. and Suh, N.P., J. Lub. Technol., 104, 2938 (1982).Google Scholar
39. Hutchings, R. and Oliver, W.C., Wear 92, 143153 (1983).Google Scholar
40. Vardiman, R.G., these proceedings.Google Scholar
41. Oliver, W.C., Hutchings, R., Pethica, J.B., Paradis, E.L. and Shuskas, A.J., these proceedings.Google Scholar
42. Hartley, N.E.W., in: Ion Implantation, Hirvonen, J.K., ed. (Academic Press, NY, 1980) p. 321.Google Scholar
43. Lo Russo, S., Mazzoldi, P., Scotoni, I., Tosello, C. and Tosto, S., Appl. Phys. Letts. 34, 627 (1979).Google Scholar
44. Cui, F.Z., Li, H-D., Zhong, X-Z., Nucl. Instrum. Methods 209/210, 881887 (1983).Google Scholar
45. Singer, I.L. and Jeffries, R.A., “Processing Steels by Tiimplantation”, these proceedings.Google Scholar
46. Hubler, G.K., Trzaskoma, P., McCafferty, E. and Singer, I.L., in: Ion Implantation into Metals, Ashworth, V., ed. (Pergamon Press, Oxford, 1982), 2434.Google Scholar
47. Marest, G., Skoutarides, C., Barnavon, Th., Tousset, J., Fayeulle, S. and Robelet, M., Nucl. Instrum. Methods 209/210, 259–265 (1983).Google Scholar
48. Ramons, E., Principi, G., Giordano, L., Lo Russo, S., and Tosello, C., Thin Solid Films, 102, 97106 (1983).Google Scholar
49. Hartley, N.E.W., J. Vac. Sci. Technol. 12, 485 (1975).Google Scholar
50. Ecer, G.M., Wood, S., Boes, D. and Schreurs, J., Wear 89, 201214 (1983).Google Scholar