Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T03:50:41.838Z Has data issue: false hasContentIssue false

Trap States in Cd(S,Se) Nanocrystals Probed by Photomodulation Spectroscopy

Published online by Cambridge University Press:  28 February 2011

Kevin L. Stokes
Affiliation:
Deptartment of Physics, Applied Physics and Astronomy and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York 12180
Peter D. Persans
Affiliation:
Deptartment of Physics, Applied Physics and Astronomy and Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

Intensity, temperature and frequency-dependent photoabsorption spectroscopy are used to probe trap states in CdSo.44Seo.56 nanoparticles in glass. The photoabsorption signal from 6.2 nm radius particles is found to be a combination of two effects: bleaching, due to phase space filling, and an electric-field effect. Frequency-dependent photoabsorption data show that the electric-field effect is caused by a long-lived (r=30 /µs at T=293 K) trap state and that the bleaching occurs on a faster time scale. The trap activation energy obtained from the temperature dependence of the lifetime is 0.23 ±0.06 eV. Only bleaching is observed in the smaller nanocrystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rossetti, R., Ellison, J.L., Gibson, J.M. and Brus, L.E., J. Chem. Phys. 80, 4464 (1984).Google Scholar
2 Rossetti, R., Nakahara, S. and Brus, L.E., J. Chem. Phys. 79, 1986 (1983).Google Scholar
3 Ekimov, A.I., Onushchenko, A.A. and Tsekhomskii, V.A., Fiz. Khim. Stekla 6, 511 (1980).Google Scholar
4 Ekimov, A.I. and Onushchenko, A.A., Sov. Phys. Semicond. 16, 775 (1982).Google Scholar
5 Ekimov, A.I., Efros, A.L. and Onuschchenko, A.A., Solid State Commun. 56, 921 (1985).Google Scholar
6 Bawendi, M.G., Carroll, P., Wilson, W.L. and Brus, L.E., J. Chem. Phys. 96, 946 (1992).Google Scholar
7 Majetich, S.A. and Carter, A.C., J. Phys. Chem. 97, 8727 (1993).Google Scholar
8 Wang, Y., Suna, A., et al. , J.Chem. Phys. 92, 6927 (1990).Google Scholar
9 Zhao, X.S., Schroeder, J., Silvestri, R.M., Bilodeau, G.T. and Persans, P.D., Mat. Res. Soc. Symp. Proc. 206, 151 (1991).Google Scholar
10 Shen, H., Hang, Z., Pan, S.H. and Pollak, F.H., Appl. Phys. Lett. 52, 2058 (1988)Google Scholar
11 Shen, H., Pollak, F.H., Woodall, J. and Sacks, R.N., J. Vac. Sci. Technol. B 7, 804 (1989).Google Scholar
12 Kanata, T., Matsunaga, M., Takakura, H. and Hamakawa, Y., J. Appl. Phys. 69, 3691 (1991).Google Scholar
13 Tu, A. and Persans, P., Appl. Phys. Lett. 58, 1506 (1991).Google Scholar
14 Mei, G., Carpenter, S., Felton, L.E. and Persans, P.D., J. Opt. Soc. Am. B 9, 1394 (1992).Google Scholar
15 Shen, H., Parayanthal, P., Liu, Y.F. and Pollak, F.H., Rev. Sci. Instrum. 58, 1429 (1987).Google Scholar
16 Stokes, K.L., Yukselici, H. and Persans, P., Solid State Commun. 92, 195 (1994).Google Scholar
17 Park, S.H.,Morgen, R.A., et al. , J. Opt. Soc. Am B 7, 2097 (1990).Google Scholar
18 Kang, K.I., Kepner, A.D., et al. , Phys. Rev. B 48, 15449 (1993).Google Scholar
19 Bube, R.H., Photoconductivity of Solids (R.E. Krieger Publishing, New York, 1978) Ch. 9.Google Scholar