Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T10:12:01.887Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy Study of an Epitaxial Gate Oxide on III-N Semiconductor Structures

Published online by Cambridge University Press:  01 February 2011

Yoga. N. Saripalli
Affiliation:
Department of Material Science and Engineering, NC State University, Raleigh, NC 27695.
X-Q Liu
Affiliation:
Department of Material Science and Engineering, NC State University, Raleigh, NC 27695.
D.W. Barlage
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University
M.A.L. Johnson
Affiliation:
Department of Material Science and Engineering, NC State University, Raleigh, NC 27695.
D. Braddock
Affiliation:
OSEMI, Inc Rochester, MN
N.A. Stoddard
Affiliation:
Department of Material Science and Engineering, NC State University, Raleigh, NC 27695.
A. Chugh
Affiliation:
Department of Material Science and Engineering, NC State University, Raleigh, NC 27695.
Get access

Abstract

An effective gate insulator for compound semiconductors has been a challenging goal for the materials research community for nearly 40 years. Recent developments on the epitaxial deposition of complex gate oxides as gate insulators have shown promise with the demonstration of enhancement mode high electron mobility transistors (e-mode HEMTs). In this work, gate oxide epilayers deposited on III-V semiconductors for field effect transistors (III-V MOSFETs) are examined using transmission electron microscopy (TEM) to identify the structure of the oxide/semiconductor interface. The high resolution images of the cross-sectional structures for the first time reveal a crystalline nature of the interface between the oxide and the III-V semiconductor. The composition of the oxide layers are determined by Z-contrast Electron Energy Loss Spectroscopy (EELS). The surface morphology of the FET structures is investigated by atomic force microscopy (AFM) both before and after gate oxide deposition, and the structural results are related to device DC electrical characteristics. With an underlying GaN/InGaN heterojunction grown by metal-organic chemical vapor deposition (MOCVD) on sapphire, the MOSFET devices exhibit the characteristics of a substantially unpinned interface, including the capacity for significant charge accumulation and transconductance at positive gate voltages.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Kwo, J., Hong, M., Busch, B., Muller, D.A., Chabal, Y.J., Kortan, A.R., Mannaerts, J.P., Yang, B., Ye, P., Gossmann, H., Sergent, A.M., Ng, K.K., Bude, J., Schulte, W.H., Garfunkel, E., Gustafsson, T., J. Cryst. Growth 251, 645 (2003)Google Scholar
2. Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G., Konstadinidis, K., Mannaerts, J.P., Schnoes, M.L., Zydzik, G.J., J. Appl. Phys. 77 (2), 15 (1995)Google Scholar
3. Passlack, M., Chen, A., Medendorp, N., Braddock, D., Appl. Phys. Lett. 84, 2325 (2004)Google Scholar
4. Johnson, J.W., Luo, B., Ren, F., Gila, B.P., Krishnamoorthy, W., Abernathy, C.R., Pearton, S.J., Chyi, J.I., Nee, T.E., Lee, C.M., and Chuo, C.C., Appl. Phys.Lett. 77 (20) 3230 (2000).Google Scholar
5. Hong, M., IEEE, p685 (1998).Google Scholar
6. Passlack, M., Appl. Phys. Lett. 84, 2521 (2004).Google Scholar
7. Hong, M., Anslem, K.A., Kwo, J., Ng, H.M., Baillargeon, J.N., Kortan, A.R., Mannaerts, J.P, and Cho, A.Y., J. Vac. Sci. Tech B, (18) 3, 1453 (2000)Google Scholar
8. Passlack, M., Medendorp, N., Afanasev, V.V., Stesmans, A., Appl. Phys. Lett. 85 (4), 597 (2004).Google Scholar
9. Ren, F., Luo, B., Kim, J., Mehandru, R., Gila, B.P., Onstine, A.H., Abernathy, C.R., Paerton, S.J., Fitch, R., Gillespie, J., Jenkins, T., Sewell, J., Via, D., Crespo, A., and Irokawa, Y., Mat. Res. Soc, Symp. Proc. 764 C4.1.1 (2003)Google Scholar
10. Ren, F., Hong, M., Kuo, J.M., Hobson, W.S., Lothian, J.R., Tsai, H.S, Lin, J., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Chen, Y.K., Cho, A.Y., IEEE, 18 (1997).Google Scholar
11. Wang, Y.C., Hong, M., Kuo, J.M., Mannaerts, J.P., Tsai, H.S., Kwo, J., Krajewski, J.J., Chen, Y.K., and Cho, Y., Electronic Letters, 35 (8), 667 (1999)Google Scholar
12. Mahendru, R., Luo, B., Kim, J., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Gotthold, D., Birkhahn, R., Peres, B., Fitch, R., Gillespie, J., Jenkins, T., Sewell, J., Via, D., Crespo, A., App. Phys. Lett. 82(15), 2530 (2003).Google Scholar
13. Ren, F., Pearton, S.J., Abernathy, C.R., Baca, A., Cheng, P., Shul, R.J., Hong, M., Lothian, J.R., Chu, S.N.G., Schurman, M.J., Sol.St. Elec. 43, 1817 (1999)Google Scholar
14. Gila, B.P., Johnson, J.W., Mahendru, R., Luo, B., Onstine, A.H., Allums, K.K., Krishnamoorthy, V., Bates, S., Abernathy, C.R., Ren, F., Pearton, S.J., Phys. Stat. Sol A, 188 (1), 239 (2001).Google Scholar
15. Saripalli, Y., Johnson, M.A.L., Liu, X.Q, Braddock, D., Kvit, A., Appl. Phys. Lett (submitted).Google Scholar
16. Barlage, D.W., Dandu, K., Braddock, D., Saripalli, Y., Liu, X.Q., Johnson, M.A.L., Sutton, W. D., Pavlitis, D., EMC Conf. Proc. (2004).Google Scholar