Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-14T02:12:43.088Z Has data issue: false hasContentIssue false

Transition From Inclined to In-Plane 60° Misfit Dislocations in a Diffuse Interface

Published online by Cambridge University Press:  21 February 2011

X. J. Ning
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

Despite tremendous activity during the last few decades in the study of strain relaxation in thin films grown on substrates of a dissimilar material, there are still a number of problems which are unresolved. One of these is the nature of misfit dislocations forming at the film/substrate interface: depending on the misfit, the dislocations constituting the interfacial network have predominantly either in-plane or inclined Burgers vectors. While, the mechanisms of formation of misfit dislocations with inclined Burgers vectors are reasonably well understood, this is not the case for in-plane misfit dislocations whose formation mechanism is still controversial. In this paper, misfit dislocations generated to relax the strains caused by diffusion of boron into silicon have been investigated by plan-view and crosssectional transmission electron microscopy. The study of different stages of boron diffusion shows that, as in the classical model of Matthews, dislocation loops are initially generated at the epilayer surface. Subsequently the threading segments expand laterally and lay down a segment of misfit dislocation at the diffuse interface. The Burgers vector of the dislocation loop is inclined with respect to the interface and thus the initial misfit dislocations are not very efficient. However, as the diffusion proceeds, non-parallel dislocations interact and give rise to product segments that have parallel Burgers vectors. Based on the observations, a model is presented to elucidate the details of these interactions and the formation of more efficient misfit dislocations from the less-efficient inclined ones.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Frank, F. C. and Merwe, J. H. van der, Proc. Roy. Soc. London A198, 205214 (1949).Google Scholar
2. Frank, F. C. and Merwe, J. H. van der, Proc. Roy. Soc. London A198, 215225 (1949).Google Scholar
3. Frank, F. C. and Merwe, J. H. van der, Proc. Roy. Soc. London A200, 125134 (1949).Google Scholar
4. Merwe, J. H. van der, Proc. Phys. Soc. Lond. A63, 616- (1950).CrossRefGoogle Scholar
5. Matthews, J. W., Phil. Mag. 6, 13471349 (1961).Google Scholar
6. Matthews, J. W., in Epitaxial Growth, Part B, edited by Matthews, J. W., (Academic Press, New York, 1975), pp. 559609.CrossRefGoogle Scholar
7. Merwe, J. H. van der, Phil. Mag. 7, 14331434 (1962).CrossRefGoogle Scholar
8. Merwe, J. H. van der, J. Appl. Phys. 34, 117122 (1963).Google Scholar
9. Merwe, J. H. van der, J. Appl. Phys. 34, 123127 (1963).CrossRefGoogle Scholar
10. Matthews, J. W., J. Vac. Sci. Technol. 12, 126133 (1975).CrossRefGoogle Scholar
11. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322324 (1985).Google Scholar
12. People, R. and Bean, J. C., Appl. Phys. Lett. 49, 229 (1986).CrossRefGoogle Scholar
13. Willis, J. R., Jain, S. C., Bullough, R., Philos. Mag. A62, 115 (1990).CrossRefGoogle Scholar
14. Jesser, W. A. and Matthews, J. W., Phil. Mag. 17, 461473 (1968).CrossRefGoogle Scholar
15. Jesser, W. A. and Matthews, J. W., Phil. Mag. 17, 475479 (1968).Google Scholar
16. Jesser, W. A. and Matthews, J. W., Phil. Mag. 17, 595602 (1968).Google Scholar
17. Matthews, J. W., Mader, S. and Light, T. B., J. Appl. Phys. 41, 38003804 (1970).CrossRefGoogle Scholar
18. Freund, B., J. Appl. Mech. 54, 553557 (1987).CrossRefGoogle Scholar
19. Nix, W. D., Met. Trans. 20A, 22172245 (1989).CrossRefGoogle Scholar
20. Matthews, J. W., Phil. Mag. 13, 12071221 (1966).CrossRefGoogle Scholar
21. Otsuka, N., Choi, C., Kolodziesjski, L. A., Gunshor, R. L., Fischer, R., Peng, C. K., Morkog, H., Nakamura, Y. and Nagakura, S., J. Vac. Sci. Technol. B4, 896899 (1986).CrossRefGoogle Scholar
22. Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 13251327 (1987).CrossRefGoogle Scholar
23. Hull, R., Bean, J. C., Werder, D. J. and Leibenguth, R. E., Appl. Phys. Lett. 52, 16051607 (1988).Google Scholar
24. Hull, R. and Bean, J. C., J. Vac. Sci. Technol. A7, 25802585 (1989).CrossRefGoogle Scholar
25. Hull, R., Bean, J. C., Bahnck, D., Peticolas, J. L. J., Short, K. T. and Unterwald, F. C., J. Appl. Phys. 70, 20522065 (1991).CrossRefGoogle Scholar
26. Frank, F. C., in Proceedings of the Symposium on Plastic Deformation of Crystalline Solids, (Carnegie Institute of Technology, Pittsburgh, PA, 1950), pp 89-.Google Scholar
27. Hirth, J. P., in “Relation Between Structure and Strength in Metals and Alloys”, (H. M. Stationary Office: London, London, 1963), pp 218228.Google Scholar
28. Cherns, D., Ph.D. Dissertation, University of Cambridge, 1974.Google Scholar
29. Ferret, P., Robinson, B. J., Thompson, D. A. and Baribeau, J.-M., Appl. Phys. Lett. 57, 22202221 (1990).CrossRefGoogle Scholar
30. Dregia, S. A. and Hirth, J. P., J. Appl. Phys. 69, 21692175 (1991).Google Scholar
31. Vincent, R., Phil. Mag. 19, 11271139 (1969).CrossRefGoogle Scholar
32. Prussin, S., J. Appl. Phys. 32, 18761881 (1961).Google Scholar
33. Queisser, H. J., J. Appi. Phys. 32, 17761780 (1961).Google Scholar
34. Schwuttke, C. H. and Queisser, H. J., J. Appl. Phys. 33, 15401542 (1962).CrossRefGoogle Scholar
35. Washburn, J., Thomas, G. and Queisser, H. J., J. Appl. Phys. 35, 19091914 (1964).Google Scholar
36. Czaja, W., J. Appl. Phys. 37, 34413446 (1966).CrossRefGoogle Scholar
37. Sugia, Y., Tamura, Y. and Sugawara, K., J. AppI. Phys. 40, 3089 (1969).Google Scholar
38. Ning, J. and Pirouz, P., in Inst. Phys. Conf. Ser. No. 117 205210 (1991).Google Scholar
39. Ning, X. J. and Pirouz, P., in Mat. Res. Soc. Symp. Proc. 308 427432 (1993).Google Scholar
40. Ning, X. J. and Pirouz, P., To be Submitted to Phil. Mag. (1994).Google Scholar
41. Vermaak, J. S. and Merwe, J. H. van der, Phil. Mag. 10, 785800 (1964).Google Scholar
42. Vermaak, J. S. and Merwe, J. H. van der, Phil. Mag. 12, 453465 (1965).Google Scholar
43. Cherns, D. and Preston, A. R., in XIth Int. Congr. on Electron Microscopy, Vol. 1 Kyoto, 1986, pp. 721722.Google Scholar
44. Tanaka, M., Terauchi, M. and Kaneyama, T., Convergent-Beam Electron Diffraction II, 1988, (JEOL Ltd.: Kyoto).Google Scholar
45. Bird, D. M. and Preston, A. R., in Proceedings of the Electron Microscopy and Analysis Group, edited by Vol. (Institute of Physics Conference Series No. 98, Bristol, 1989), pp. 123.Google Scholar
46. Cherns, D. and Preston, A. R., J. Electron Microsc. Technique 13, 111 (1989).Google Scholar
47. Wang, J., Steeds, J. W. and Woolf, D. A., Philos. Mag. A 65, 829839 (1992).CrossRefGoogle Scholar
48. Whelan, M. J., Proc. Roy. Soc. Lond. A249, 114137 (1959).Google Scholar
49. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd Edition, 1982, (J. Wiley & Sons, Inc.: New York).Google Scholar
50. Amelinckx, S., in Dislocations in Solids, edited by Nabarro, F. R. N., New York, 1979), pp. 67460.Google Scholar
51. Marée, P. M., Barbour, J. C., Veen, J. F. V. d., Kavanagh, K. L., Bulle-Lieuwma, C. W. T. and Viegers, M. P. A., J. Appl. Phys. 62, 44134420 (1987).Google Scholar
52. Ning, X. J. and Pirouz, P., Unpublished WorkGoogle Scholar
53. Carter, C. B., Anderson, G. and Ponce, F., Phil. Mag. A 63, 279298 (1991).Google Scholar
54. Ernst, F., Pirouz, P. and Bauser, E., Phys. Stat. Sol. (a) 131, 651662 (1992).CrossRefGoogle Scholar
55. Ernst, F., Philos. Mag. In press. (1994).Google Scholar