Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-01T05:11:16.044Z Has data issue: false hasContentIssue false

Transient Phases and their Transition Temperatures of A-Si in Non-Isothermal Processes

Published online by Cambridge University Press:  15 February 2011

Masakuni Suzuki
Affiliation:
Kanazawa University, Department of Electrical & Computer Engineering, Faculty of Technology, Kodatsuno 2–40–20, Kanazawa 920, Japan
Akio Kitagaffa
Affiliation:
Kanazawa University, Department of Electrical & Computer Engineering, Faculty of Technology, Kodatsuno 2–40–20, Kanazawa 920, Japan
Get access

Abstract

The heating rate dependence of the phase transition temperature was formulated based on the temperature dependence of nucleation of a new phase. The glass transition temperature of a-Si was explained in terms of van der Waals fluid of a-Si pseudo-Molecules which are produced by the fragmentation of continuous random networks of Si atoms. Transient phases and their transition temperatures as a function of the heating rate are summarized in the phase diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Spaepen, F. and Turnbull, D., AIP Conf. Proc. 50, 73 (1979);Google Scholar
Bagley, B.G. and Chen, H.S., AIP Conf. Proc., 50, 97 (1979).Google Scholar
2) Baeri, P., Fotti, G., Poate, J.M. and Cullis, A.G., Phys. Rev. Lett. 45, 2036 (1980).Google Scholar
3) Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
4) Tsu, R., Hodgson, R.T., Tan, T.Y. Baglin, J.E., Phys. Rev. Lett. 42, 1356 (1979).Google Scholar
5) Liu, P.L., Yen, R., Bloembergen, N. and Hodgson, R.T., Appl. Phys. Lett. 34, 864 (1979).Google Scholar
6) Cullis, A.G., Webber, H.C. and Chew, N.G., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
7) Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M. and Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983).Google Scholar
8) Evans, P.V., Devaud, G., Kelly, T.F. and Kim, Y-W., Acta. Metall. Mater. 53, 719 (1990).Google Scholar
9) Sameshima, T. and Usui, S., J. Appl. Phys. 70, 1281 (1991).Google Scholar
10) Narayan, J., White, C.W., Holland, O.W. and Aziz, M.J., J. Appl. Phys. 56, 1821 (1984).Google Scholar
11) Sinke, W., Saris, F.W., Barbour, J.C. and Mayer, J.W., J. Mater. Res. 1, 155 (1986).Google Scholar
12) Peercy, P.S., Thompson, M.O. and Tsao, J.Y., Mater. Res. Soc. Symp. Proc. 74, 15 (1987).Google Scholar
13) Lowndes, D.H., Pennycook, S.J., Jellison, G.E. Jr, Withrow, S.P. and Mashburn, D.N., J. Mater. Res. 2, 648 (1987).Google Scholar
14) Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 42, 698 (1983); J. Appl. Phys. 57, 1795 (1985).Google Scholar
15) Murakami, K., Gerritsen, H.C., van Brug, H., Bijkerk, F., Saris, F.W. and van der Wiel, M.J., Phys. Rev. Lett. 56, 655 (1986).Google Scholar
16) Gerritsen, H.C., van Brug, H., Bijkerk, F., Murakami, K. and van der Wiel, M.J., J. Appl. Phys. 60, 1774 (1986).Google Scholar
17) Auston, D.H., Surko, C.M., Vekatesan, T.N.C., Slusher, R.E. and Golovchenko, J.A., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
18) Olson, G.L., Roth, J.A., Nygren, E., Pogany, A.P. and Williams, J.S., Mat. Res. Soc. Symp. Proc. 74, 109 (1987).Google Scholar
19) Kokorowski, S.A., Olson, G.L., Roth, J.A. and Hess, L.D., Phys. Rev. Lett. 48, 498 (1982).Google Scholar
20) Narayan, J., Holland, O.W., Eby, R.E., Wortman, J.J., Ozguz, V. and Rozgony, G.A., Appl. Phys. Lett. 43, 957 (1983).Google Scholar
21) Kalish, R., Sedgwick, T.O. and Mader, S., Appl. Phys. Lett. 44, 107 (1984).Google Scholar
22) Morehead, F.F. and Hodgson, R.T., Mat. Res. Soc. Symp. Proc. 35, 341 (1985).Google Scholar
23) Turnbull, D., Mater. Res. Soc. Symp. Proc. 7, 103 (1982).Google Scholar
24) Stiffler, S.R., Evans, P.V. and Greer, A.L., Acta. Metall. Mater. 40, 1617 (1992).Google Scholar
25) Stiffler, S.R., Thompson, M.O. and Peercy, P.S., Phys. Rev. B, 43, 9851 (1991).Google Scholar
26) Brodsky, M.H., Title, R.S., Weiser, K. and Pettit, G.D., Phys. Rev. B, 1, 2632 (1970).Google Scholar
27) Motooka, T. and Holland, O.H., Appl. Phys. Lett. 61, 3005 (1992).Google Scholar
28) Polk, D.E., J. Non-cryst. Solids, 5, 365 (1971).Google Scholar
29) Chakraverty, B.K., Surf. Sci. 4, 205 (1966).Google Scholar
30) Kashchiev, D.K., Surf. Sci. 14, 209 (1969).Google Scholar
31) Kelton, K.F., Greer, A.L. and Thompson, C.V., J. Chem. Phys. 79, 6261 (1983).Google Scholar
32) Iverson, R.B. and Reif, R., J. Appl. Phys. 62, 1675 (1987).Google Scholar
33) Blum, N. and Feldman, C., J. Non-cryst. Solids. 11, 242 (1972).Google Scholar
34) Koester, U., Phys. stat. sol. (a) 48, 313 (1978).Google Scholar
35) Bisaro, R., Magarino, J., Zellama, K., Squelard, S., Germain, P. and Morhange, J.F., Phys. Rev. B, 31, 3568 (1985).Google Scholar
36) Suzuki, M., Hiramoto, M., Oguiura, M., Kamisaka, W. and Hasegawa, S., Jpn. J. Appl. Phys. 27, L1380 (1988).Google Scholar
37) Fan, J.C.C. and Anderson, C.H. Jr, J. Appl. Phys. 52, 4003 (1981).Google Scholar
38) Connel, G.A.N. and Paul, W., J. Non-cryst. Solids, 8–10, 381 (1972).Google Scholar