Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-20T06:26:38.381Z Has data issue: false hasContentIssue false

Towards a Microscopic Interpretation of the Dielectric Function of Porous Silicon

Published online by Cambridge University Press:  15 February 2011

U. Rossow
Affiliation:
North Carolina State Univ., Phys. Dept., Raleigh, NC 27695-8202 TU Berlin, Physik, PN6-1, D-10623 Berlin, Germany
U. Frotscher
Affiliation:
TU Berlin, Physik, PN6-1, D-10623 Berlin, Germany
D. E. Aspnes
Affiliation:
North Carolina State Univ., Phys. Dept., Raleigh, NC 27695-8202
W. Richter
Affiliation:
TU Berlin, Physik, PN6-1, D-10623 Berlin, Germany
Get access

Abstract

The dielectric function of porous silicon layers depends strongly on the electronic properties of the nanostructure of the silicon skeleton. In this paper we discuss the main effects, as determined from spectroscopic ellipsometric measurements of the dielectric function of porous layers formed on p-doped material. Finite-size effects and the high inner surface area of the nanostructure lead to relaxation of k-momentum conservation as defined for infinite crystals and therefore to a broadening of the features in <ε> arising from interband critical points. In addition a small threshold energy shift is observed when the percolation of the structure is reduced. However, this shift is too small to explain red photoluminescence as a consequence of a pseudo-direct gap whose energy is blue-shifted by confinement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rossow, U., Münder, H., Thönissen, M., Theiss, W., J. of Luminescence 57, 205 (1993)Google Scholar
[2] Rossow, U., Frotscher, U., Richter, W., Münder, H., Thönissen, M., Berger, M. G.: Mat. Res. Soc. Symp. Proc. 358, 429 (1995)Google Scholar
[3] Rossow, U., Frotscher, U., Pietryga, C., Richter, W., Appl. Surf. Sci., acceptedGoogle Scholar
[4] Rossow, U., Frotscher, U., Thönissen, M., Berger, M. G., Frohnhoff, S., Münder, H., Richter, W., Thin Solid Films 255, 5 (1995)Google Scholar
[5] Frotscher, U., Rossow, U., Pietryga, C., Ebert, M., Richter, W., Berger, M., Münder, H., Thin Solid Films, acceptedGoogle Scholar
[6] Aspnes, D. E., J. Opt. Soc. Am. 64, 639, 812 (1974); D.E.Aspnes, A.A. Studna, Appl. Opt. 14, 220 (1975).Google Scholar
[7] Lehmann, V., Gösele, U.: Mat. Res. Soc. Symp. Proc. 283, 27 (1993)Google Scholar
[8] Aspnes, D. E., Studna, A. A., Phys. Rev. B27, 983 (1983).Google Scholar
[9] Bruggemann, D. A. G., Ann. Phys.(Leipzig) 24, 636 (1935)Google Scholar
[10] Cardona, M., in Modulation Spectroscopy, Suppl. 11 of Solid State Physics, edited by F., Seitz, D., Turnbull, and H., Ehrenreich, Academic, New York, 1969 Google Scholar
[11] Nuygen, H., Collins, R. W. Phys. Rev. Lett. 74, 3880 (1995)Google Scholar
[12] Logothetidis, S., Polatoglou, H. M., Ves, S., Sol, St. Comm. 68, 1075 (1988).Google Scholar
[13] Kaneko, H., French, P. J., Wolffenbuttel, R. F., J. of Luminescence 57, 101 (1993)Google Scholar
[14] Petrova-Koch, V., Muschik, T., Thin Solid Films 255, 246 (1995)Google Scholar
[15] Kux, A., Kovalev, D., Koch, F., Thin Solid Films 255, 143 (1995)Google Scholar
[16] Yasuda, T., Aspnes, D. E., Lee, D. R., Bjorkman, C. H., Lucovsky, G., J. Vac. Sci. Technol. A 12, 546 (1994).Google Scholar
[17] Hartmannsgruber, E., Rossow, U., Hoyer, A., Lange, P., J. Non-Crystalline Solids, in printGoogle Scholar