Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T00:39:50.026Z Has data issue: false hasContentIssue false

Toward the Integration of Photonic Crystals with Optical Fiber

Published online by Cambridge University Press:  17 March 2011

Y. Suzuki
Affiliation:
Department of Materials Science and Engineering, Cornell UniversityIthaca, NY 14853
Lu Chen
Affiliation:
Department of Materials Science and Engineering, Cornell UniversityIthaca, NY 14853
Glenn E. Kohnke
Affiliation:
Photonics Technologies, Corning Inc. Corning, NY 14831
Get access

Abstract

We have developed a novel silicon platform where light from optical fiber is coupled directly into and out of silicon-based photonic crystal structures with over 30dB suppression of transmission from 1400nm to 1700nm and defect energy levels tuned to within 2nm in the bandgap. Insertion losses as low as 3.5dB have been achieved. The optical spectra of our one-dimensional silicon-based photonic crystals can be quantitatively described by a simple model of light incident on a series of dielectric interfaces. The agreement between experiment and simulation and the low insertion losses are promising for the future integration of photonic crystals into optical communications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krauss, T.F., Rue, R.M. De la, Brand, S., Nature 383 699 (1996).Google Scholar
2. Foresi, J.R., Villeneuve, P.R., Ferrera, J., Thoen, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimerling, L.C., Smith, H.I., Ippen, E.P. Nature 390 143 (1997).Google Scholar
3. Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., Bur, J. Nature 394 251 (1998).Google Scholar
4. Leonard, S.W., Driel, H.M. van, Busch, K., John, S., Birner, A., Li, A.P., Muller, F., Gosele, U., Lehman, V., Appl. Phys. Lett. 75 3063 (1999).Google Scholar
5. Loncar, M., Nedelijkovic, D., Doll, T., Vuckovic, J., Scherer, A., Pearsall, T.P. Appl. Phys. Lett. 77 1937 (2000).Google Scholar
6. Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A. Science 289 604 (2000).Google Scholar
7. Blanco, A., Chomski, E., Grabtchak, S., Ibsate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., Driel, H.M. van Nature 405 437 (2000).Google Scholar
8. Chow, E., Lin, S.Y., Johnson, S.G., Villeneuve, P.R., Joannopoulos, J.D., Wendt, J.R., Vawter, G.A., Zubrzycki, W., Hou, H., Alleman, A. Nature 407 983 (2000).Google Scholar
9. Kawakami, S., Electronics Lett. 33 1260 (1997).Google Scholar
10. Zijlstra, T, Drift, E van der, Dood, M J A de, J. Vac. Sci. Technol. B 17, 2734 (1999).Google Scholar