Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T05:31:51.593Z Has data issue: false hasContentIssue false

Toward an Inverse Approach for the Design of Small-Molecule Fixating Catalysts

Published online by Cambridge University Press:  14 January 2013

Thomas Weymuth
Affiliation:
ETH Zurich, Laboratory for Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
Markus Reiher*
Affiliation:
ETH Zurich, Laboratory for Physical Chemistry, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
Get access

Abstract

Within an inverse design approach applied to a nitrogen-fixation catalyst we discuss options for calculating “jacket” potentials that fulfill a purpose-oriented target requirement. As a target requirement we choose the vanishing geometric gradients on all atoms of a subsystem consisting of a metal center binding the small molecule to be activated - in our case dinitrogen. The additional potential can be represented within a full quantum model or by a sequence of approximations of which a field of electrostatic point charges is the simplest. In order to analyze the feasibility of this approach, we dissect a known dinitrogen-fixating complex and analyze its ligand environment expressed by the “jacket” potential. It is discussed how this ligand-bypotential replacement can be generalized for future applications that eventually allow us to find a competitive synthetic nitrogen-fixation transition metal complex. It can be expected that such a ligand-by-potential replacement approach will be applicable to any type of host-guest chemical process.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, X., Beratan, D. N., Yang, W., Sci. China Ser. B Chem. 52, 1769 (2009).10.1007/s11426-009-0260-3CrossRefGoogle Scholar
Karwowski, J., Int. J. Quantum Chem. 109, 2456 (2009).10.1002/qua.22048CrossRefGoogle Scholar
von Lilienfeld, A., Int. J. Quantum Chem. submitted. Google Scholar
Leigh, G., Nitrogen Fixation at the Millenium (Elsevier, 2002).Google Scholar
Yandulov, D. V., Schrock, R. R., Science 301, 76 (2003).10.1126/science.1085326CrossRefGoogle Scholar
Arashiba, K., Miyake, Y.. Nishibayashi, Y., Nature Chem. 3, 120 (2011).10.1038/nchem.906CrossRefGoogle Scholar
Weare, W. W., Dai, C., Byrnes, M. J., Chin, J., Schrock, R. R., Proc. Nat. Acad. Sci. 103, 17099 (2006).CrossRefGoogle Scholar
Schrock, R. R., Nature Chem. 3, 95 (2011).10.1038/nchem.977CrossRefGoogle Scholar
Schrock, R. R., Angew. Chem. Int. Ed. 47, 5512 (2008).10.1002/anie.200705246CrossRefGoogle Scholar
Schenk, S., Reiher, M., Inorg. Chem. 48, 1638 (2009).10.1021/ic802037wCrossRefGoogle Scholar
Schenk, S., Kirchner, B., Reiher, M., Chem. Eur. J. 15, 5073 (2009).CrossRefGoogle Scholar
Schenk, S., Le Guennic, B., Kirchner, B., Reiher, M., Inorg. Chem. 47, 3634 (2008).10.1021/ic702083pCrossRefGoogle Scholar
Himmel, H.-J., Reiher, M., Angew. Chem. 118, 6412 (2006).10.1002/ange.200502892CrossRefGoogle Scholar
Reiher, M., Le Guennic, B., Kirchner, B., Inorg. Chem. 44, 9640 (2005).10.1021/ic0517568CrossRefGoogle Scholar
Le Guennic, B., Kirchner, B., Reiher, M., Chem. Eur. J. 11, 7448 (2005).10.1002/chem.200500935CrossRefGoogle Scholar
Kirchner, B., Reiher, M., Hille, A., Hutter, J., Hess, B. A., Chem. Eur. J. 11, 574 (2005).10.1002/chem.200400709CrossRefGoogle Scholar
Reiher, M., Kirchner, B., Hutter, J., Sellmann, D., Hess, B. A., Chem. Eur. J. 10, 4443 (2004).CrossRefGoogle Scholar
Sellmann, D., Hille, A., Roesler, A., Heinemann, F. W., Moll, M., Brehm, G., Schneider, S., Reiher, M., Hess, B. A., Bauer, W., Chem. Eur. J. 10, 819 (2004).10.1002/chem.200305499CrossRefGoogle Scholar
Sellmann, D., Hille, A., Heinemann, F. W., Moll, M., Reiher, M., Hess, B. A., Bauer, W., Chem. Eur. J. 10, 4214 (2004).CrossRefGoogle Scholar
Reiher, M., Hess, B. A., Adv. Inorg. Chem. 56, 55 (2004).CrossRefGoogle Scholar
Sellmann, D., Hille, A., Heinemann, F. W., Moll, M., Rösler, A., Sutter, J., Brehm, G., Reiher, M., Hess, B. A., Schneider, S., Inorg. Chim. Acta 348, 194 (2003).CrossRefGoogle Scholar
Reiher, M., Hess, B. A., Chem. Eur. J. 8, 5332 (2002).10.1002/1521-3765(20021202)8:23<5332::AID-CHEM5332>3.0.CO;2-I3.0.CO;2-I>CrossRef3.0.CO;2-I>Google Scholar
Crossland, J. L., Tyler, D. R., Coord. Chem. Rev. 254, 1883 (2010).10.1016/j.ccr.2010.01.005CrossRefGoogle Scholar
te Velde, G., Bickelhaupt, F. M., van Gisbergen, S. J. A., Fonseca Guerra, C., Baerends, E. J., Snijders, J. G., Ziegler, T., J. Comput. Chem. 22, 931 (2001).10.1002/jcc.1056CrossRefGoogle Scholar
Becke, A. D., Phys. Rev. A 38, 3098 (1988).10.1103/PhysRevA.38.3098CrossRefGoogle Scholar
Perdew, J. P., Phys. Rev. B 33, 8822 (1986).10.1103/PhysRevB.33.8822CrossRefGoogle Scholar
van Lenthe, E., Baerends, E. J., J. Comput. Chem. 24, 1142 (2003).10.1002/jcc.10255CrossRefGoogle Scholar
van Lenthe, E., Ehlers, A. E. and Baerends, E. J., J. Chem. Phys. 110, 8943 (1999).10.1063/1.478813CrossRefGoogle Scholar
Wesolowski, T. A. in Computational Chemistry: Reviews of Current Trends, edited by Leszczynski, Jerzy (World Scientific, 2006), pp. 182.Google Scholar
Neugebauer, J., Phys. Rep. 489, 1 (2010).10.1016/j.physrep.2009.12.001CrossRefGoogle Scholar
Gomes, A. S. P., Jacob, Ch. R., Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 108, 222 (2012).CrossRefGoogle Scholar
Konig, P. H., Hoffmann, M., Frauenheim, Th., Cui, Q., J. Phys. Chem. B 109, 9082 (2005).10.1021/jp0442347CrossRefGoogle Scholar
Vreven, T., Byun, K. S., Komaromi, I., Dapprich, S., Montgomery, J. A. Jr., Morokuma, K., Frisch, M. J., J. Chem. Theory Comput. 2, 815 (2006).CrossRefGoogle Scholar
Wang, M., Hu, X., Beratan, D. N., Yang, W., J. Am. Chem. Soc. 128, 3228 (2006).10.1021/ja0572046CrossRefGoogle Scholar