Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-04T13:48:17.763Z Has data issue: false hasContentIssue false

Tissue Engineered Bone Using Polycaprolactone Scaffolds Made by Selective Laser Sintering

Published online by Cambridge University Press:  01 February 2011

J. M. Williams
Affiliation:
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
A. Adewunmi
Affiliation:
Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
R. M. Schek
Affiliation:
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
C. L. Flanagan
Affiliation:
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
P. H. Krebsbach
Affiliation:
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA Dentistry, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
S. E. Feinberg
Affiliation:
Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
S. J. Hollister
Affiliation:
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA Surgery, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
S. Das
Affiliation:
Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109-0018, USA
Get access

Abstract

Polycaprolactone is a bioresorbable polymer that has potential for tissue engineering of bone and cartilage. In this work, we report on the computational design and freeform fabrication of porous polycaprolactone scaffolds using selective laser sintering, a rapid prototyping technique. The microstructure and mechanical properties of the fabricated scaffolds were assessed and compared to designed porous architectures and computationally predicted properties. Compressive modulus and yield strength were within the lower range of reported properties for human trabecular bone. Finite element analysis showed that mechanical properties of scaffold designs and of fabricated scaffolds can be computationally predicted. Scaffolds were seeded with BMP-7 transduced fibroblasts and implanted subcutaneously in immunocompromised mice. Histological evaluation and micro-computed tomography (μCT) analysis confirmed that bone was generated in vivo. Finally, we have demonstrated the clinical application of this technology by producing a prototype mandibular condyle scaffold based on an actual pig condyle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rutherford, R.B., Gu, K., Racenis, P., and Krebsbach, P.H., Connect Tissue Res, 44 (1), Suppl 1:117123 (2003)Google Scholar
2. Mercuri, L.G., Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 85 (6), 631–7 (1998)Google Scholar
3. Das, S. and Hollister, S.J., Encyclopedia of Materials: Science and Technology, 2003)Google Scholar
4. Agrawal, C.M. and Ray, R.B., J.Biomed Mater Res, 55 (2), 141150 (2001)Google Scholar
5. Griffith, L., Acta mater., 48 (263277 (2000)Google Scholar
6. Langer, R. and Tirrell, D.A., Nature, 428 (6982), 487–92 (2004)Google Scholar
7. Agrawal, C.M. and Ray, R.B., J.Biomed Mater Res, 55 (2), 141150 (2001)Google Scholar
8. Griffith, L., Acta mater., 48 (263277 (2000)Google Scholar
9. Langer, R. and Tirrell, D.A., Nature, 428 (6982), 487–92 (2004)Google Scholar
10. Landers, R., Pfister, A., Hubner, U., John, H., Schmelzeisen, R., and Mulhaupt, R., Journal of Materials Science, 37 (15), 31073116 (2002)Google Scholar
11. Deckard, C.R., M.S. Thesis, University of Texas at Austin, 1986.Google Scholar
12. Deckard, C.R., Ph.D. Thesis, University of Texas at Austin, 1988.Google Scholar
13. Vail, N.K., Swain, L.D., Fox, W.C., Aufdlemorte, T.B., Lee, G., and Barlow, J.W., Materials & Design, 20 (2–3), 123132 (1999)Google Scholar
14. Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Cheang, P., Abu Bakar, M.S., and Cha, S.W., Biomaterials, 24 (18), 31153123 (2003)Google Scholar
15. Shishkovsky, I.V., Yu. Tarasova, E., Zhuravel, L.V. L. V., and Petrov, A.L., Technical Phys Lett, 27 (3), 211213 (2001)Google Scholar
16. Berry, E., Brown, J.M., Connell, M., Craven, C.M., Efford, N.D., Radjenovic, A., and Smith, M.A., Med Eng Phys, 19 (1), 9096 (1997)Google Scholar
17. Das, S., Hollister, S.J., Flanagan, C., Adewunmi, A., Bark, K., Chen, C., Ramaswamy, K., Rose, D., and Widjaja, E., Rapid Prototyping Journal, 9 (1), 4349 (2003)Google Scholar
18. Vail, N.K., Swain, L.D., Fox, W.C., Aufdlemorte, T.B., Lee, G., and Barlow, J.W., Materials & Design, 20 (2–3), 123132 (1999)Google Scholar
19. Shishkovsky, I.V., Tarasova, E.Yu., Zhuravel, L.V. L. V., and Petrov, A.L., Technical Phys Lett, 27 (3), 211213 (2001)Google Scholar
20. Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M., Cheang, P., Abu Bakar, M.S., and Cha, S.W., Biomaterials, 24 (18), 31153123 (2003)Google Scholar
21. Das, S., Hollister, S.J., Flanagan, C., Adewunmi, A., Bark, K., Chen, C., Ramaswamy, K., Rose, D., and Widjaja, E., Rapid Prototyping Journal, 9 (1), 4349 (2003)Google Scholar
22. Zein, I., Hutmacher, D.W., Tan, K.C., and Teoh, S.H., Biomaterials, 23 (4), 11691185 (2002)Google Scholar
23. Rohner, D., Hutmacher, D.W., Cheng, T.K., Oberholzer, M., and Hammer, B., J Biomed Mater Res Part B: Appl Biomater, 66B (574580 (2003)Google Scholar
24. Hutmacher, D.W., J.Biomater Sci Polymer Edn, 12 (1), 107124 (2001)Google Scholar
25. Hutmacher, D.W., Biomaterials, 21 (24), 25292543 (2000)Google Scholar
26. Hutmacher, D.W., Schantz, T., Zein, I., Ng, K.W., Teoh, S.H., and Tan, K.C., J.Biomed Mater Res, 55 (2), 203216 (2001)Google Scholar
27. Hutmacher, D.W., Biomaterials, 21 (24), 25292543 (2000)Google Scholar
28. Hutmacher, D.W., Schantz, T., Zein, I., Ng, K.W., Teoh, S.H., and Tan, K.C., J.Biomed Mater Res, 55 (2), 203216 (2001)Google Scholar
29. Rohner, D., Hutmacher, D.W., Cheng, T.K., Oberholzer, M., and Hammer, B., J Biomed Mater Res Part B: Appl Biomater, 66B (574580 (2003)Google Scholar
30. Zein, I., Hutmacher, D.W., Tan, K.C., and Teoh, S.H., Biomaterials, 23 (4), 11691185 (2002)Google Scholar
31. Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.-S., Oh, J.-S., Akaike, T., and Cho, C.-S., Biomaterials, 24 (5), 801808 (2003)Google Scholar
32. Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A., and Weiss, L.E., J Biomed Mater Res, 47 (3), 324335 (1999)Google Scholar
33. Wang, F., Shor, L., Darling, A., Sun, W., Guceri, S., and Lau, A., 2003)Google Scholar
34. Wu, B.M., Borland, S.W., Giordano, R.A., Cima, L.G., Sachs, E.M., and Cima, M.J., J Controlled Release, 40 (1–2), 7787 (1996)Google Scholar
35. Xiong, Z., Yan, Y., Wang, S., Zhang, R., and Zhang, C., Scripta Materialia, 46 (11), 771776 (2002)Google Scholar
36. Sun, W., Starly, B., Darling, A., and Gomez, C., J.Biotech Appl Biochem, 39 (1), 4958 (2004)Google Scholar
37. Sun, W., Darling, A., Starly, B., and Nam, J., J.Biotech Appl Biochem, 39 (1), 2947 (2004)Google Scholar
38. Sun, W. and Lal, P., Comp Meth Prog Biomed, 67 (85103 (2002)Google Scholar
39. Sun, W. and Lal, P., Comp Meth Prog Biomed, 67 (85103 (2002)Google Scholar
40. Sun, W., Starly, B., Darling, A., and Gomez, C., J.Biotech Appl Biochem, 39 (1), 4958 (2004)Google Scholar
41. Wang, F., Shor, L., Darling, A., Sun, W., Guceri, S., and Lau, A., 2003)Google Scholar
42. Franceschi, R.T., Wang, D., Krebsbach, P.H., and Rutherford, R.B., J Cell Biochem, 78 (3), 476–86 (2000)Google Scholar
43. Gazit, D., Turgeman, G., Kelley, P., Wang, E., Jalenak, M., Zilberman, Y., and Moutsatsos, I., J Gene Med, 1 (2), 121–33 (1999)Google Scholar
44. Krebsbach, P.H., Gu, K., Franceschi, R.T., and Rutherford, R.B., Hum Gene Ther, 11 (8), 1201–10 (20)Google Scholar
45. Rutherford, R.B., Moalli, M., Franceschi, R.T., Wang, D., Gu, K., and Krebsbach, P.H., Tissue Eng, 8 (3), 441–52 (2002)Google Scholar
46. Lieberman, J.R., Le, L.Q., Wu, L., Finerman, G.A., Berk, A., Witte, O.N., and Stevenson, S., J Orthop Res, 16 (3), 330–9 (98)Google Scholar
47. Lieberman, J.R., Le, L.Q., Wu, L., Finerman, G.A., Berk, A., Witte, O.N., and Stevenson, S., J Orthop Res, 16 (3), 330–9 (98)Google Scholar
48. Rutherford, R.B., Moalli, M., Franceschi, R.T., Wang, D., Gu, K., and Krebsbach, P.H., Tissue Eng, 8 (3), 441–52 (2002)Google Scholar
49. Krebsbach, P.H., Gu, K., Franceschi, R.T., and Rutherford, R.B., Hum Gene Ther, 11 (8), 1201–10 (20)Google Scholar
50. Schek, R.M., Hollister, S.J., and Krebsbach, P.H., Mol Ther, 9 (1), 130–8 (2004)Google Scholar
51. Hollister, S.J., Levy, R.A., Chu, T.M., Halloran, J.W., and Feinberg, S.E., Int J Oral Maxillofac Surg, 29 (1), 6771 (2000)Google Scholar
52. Hollister, S.J., Maddox, R.D., and Taboas, J.M., Biomaterials, 23 (20), 4095–103 (2002)Google Scholar
53. Porter, B.D., Oldham, J.B., He, S.L., Zobitz, M.E., Payne, R.G., An, K.N., Currier, B.L., Mikos, A.G., and Y.MJ, , J Biomech Eng, 122 (3), 286288 (2000)Google Scholar
54. Ouyang, J., Yang, G.T., Wu, W.Z., Zhu, Q.A., and Zhong, S.Z., Clinical Biomechanics, 12 (7/8), 522524 (97)Google Scholar
55. Lang, S.M., Moyle, D.D., Berg, E.W., Detorie, N., Gilpin, A.T., Pappas, N.J. Jr, Reynolds, J.C., Tkacik, M., and Waldron, R.L. 2nd, J Bone Joint Surg Am, 70 (10), 1531–8 (88)Google Scholar
56. 88-89 (97)Google Scholar
57. Lotz, J.C., Gerhart, T.N., and Hayes, W.C., J Comput Assist Tomogr, 14 (1), 107–14 (90)Google Scholar
58. Ouyang, J., Yang, G.T., Wu, W.Z., Zhu, Q.A., and Zhong, S.Z., Clinical Biomechanics, 12 (7/8), 522524 (97)Google Scholar
59. 88-89 (97)Google Scholar
60. Porter, B.D., Oldham, J.B., He, S.L., Zobitz, M.E., Payne, R.G., An, K.N., Currier, B.L., Mikos, A.G., and Y.|MJ, J Biomech Eng, 122 (3), 286288 (2000)Google Scholar
61. Lotz, J.C., Gerhart, T.N., and Hayes, W.C., J Comput Assist Tomogr, 14 (1), 107–14 (90)Google Scholar
62. Goulet, R.W., Goldstein, S.A., Ciarelli, M.J., Kuhn, J.L., Brown, M.B., and Feldkamp, L.A., J Biomechanics, 27 (4), 375389 (94)Google Scholar
63. Chen, Q., Kaji, H., Iu, M.F., Nomura, R., Sowa, H., Yamauchi, M., Tsukamoto, T., Sugimoto, T., and Chihara, K., J Clin Endocrinol Metab, 88 (10), 4655–8 (2003)Google Scholar
64. Schek, R.M., Mazumder, J., Holliser, S.J., and Krebsbach, P.H., 50th Annual Meeting of the Orthopaedic Reseach Society, Poster No: 0743 (2004)Google Scholar