Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T08:12:20.318Z Has data issue: false hasContentIssue false

Time Voltage Dependency in Resistance Switching TiO2

Published online by Cambridge University Press:  21 May 2012

Christian Nauenheim
Affiliation:
Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, 1650 blvd. Lionel Boulet, Varennes, QC J3X 1S2, Canada Département de génie électrique et informatique, Université de Sherbrooke, 2500 blvd. Université, Sherbrooke, QC J1K 2R1, Canada
Dominique Drouin
Affiliation:
Département de génie électrique et informatique, Université de Sherbrooke, 2500 blvd. Université, Sherbrooke, QC J1K 2R1, Canada
Rainer Waser
Affiliation:
Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich, 52425 Jülich, Germany
Andreas Ruediger
Affiliation:
Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, 1650 blvd. Lionel Boulet, Varennes, QC J3X 1S2, Canada
Get access

Abstract

Resistively switching TiO2 thin films show a multitude of resistance states, which are achieved during the programming and erasing of a memory cell. These resistance states depend on the applied voltage and the allowed current. Additionally, the operation time has a relevant influence on the adjusted resistance. This parameterization points out a potential application in future multi-level cell memory systems, but also determines the persistence of the non-volatile nature and provides an additional insight into the physics of the resistance switching. Our devices consist of metal-insulator-metal stacks made of Pt/TiO2/Ti/Pt, which are built up in crosspoint junctions. The maximum programming current and the maximum erase voltage amplitude were used to tune in the low resistance and high resistance state, respectively, in combination with the operation time. The corresponding dependencies were determined by quasi-static voltage sweeps, pulse bursts and single pulses of up to 4 V and down to 10 ns.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chua, L., Appl. Phys. A 102, 765783 (2011).Google Scholar
2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., Nature 453, pp. 8083 (2008).Google Scholar
3. Campardo, G., Micheloni, R., Novosel, D., “VLSI-Design of Non-Volatile Memories” (Springer-Verlag Berlin Heidelberg, 2005) pp. 24.Google Scholar
4. Alibart, F., Gao, L., Hoskins, B.D., Strukov, D.B., Nanotechnol. 23, 075201 (2012).Google Scholar
5. Pickett, M.D. et al. ., J. Appl. Phys. 106, pp. 074508 (2009).Google Scholar
6. Wang, C.-H. et al. ., IEEE Trans. Electron Devices 58, pp. 2466 (2011).Google Scholar
7. Green, J.E. et al. ., Nature 445, 414 (2007).Google Scholar
8. Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21, 2632 (2009).Google Scholar
9. Yang, J.J. et al. ., Adv. Mater. 21, 3754 (2009).Google Scholar
10. Kim, K.M. et al. ., Nanotechnol. 22, 254010 (2011).Google Scholar
11. Yang, J.J. et al. ., Appl. Phys. A 102, 785789 (2011).Google Scholar
12. Nauenheim, C. et al. ., 8th IEEE Conference on Nanotechnol., 464467 (2008).Google Scholar
13. Watanabe, T. et al. ., J. Electrochem. Soc. 154, G143G140 (2007).Google Scholar
14. Jeong, D.S., Schroeder, H., Breuer, U., Waser, R., J. Appl. Phys. 104, 123716 (2008).Google Scholar
15. Nauenheim, C., Kuegeler, C., Ruediger, A., Waser, R., Appl. Phys. Lett. 96, 122902 (2010).Google Scholar
16. Jeong, D.S., Schroeder, H., Waser, R., Nanotechnol. 20, 375201 (2009).Google Scholar
17. Kim, K.M., Han, S., Hwang, C.S., Nanotechnol. 23, 035201 (2012).Google Scholar