Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:56:23.403Z Has data issue: false hasContentIssue false

Threshold Voltage and Field for Metal Filament Formation in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  21 March 2011

P. Stradins
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401, USA
H. M. Branz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401, USA
W. B. Jackson
Affiliation:
Hewlett Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304, USA
R.S. Crandall
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401, USA
J. Hu
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401, USA
Q. Wang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401, USA
Get access

Abstract

Electrical switching due to metallic filament formation in hydrogenated amorphous silicon (a-Si:H) is studied in metal/a-Si:H/metal structures. We examine the effects of a-Si:H switch layer thickness, applied voltage and polarity, metal contact material, and contact interface properties. For switching, the voltage applied to the contacts must be large enough to establish: 1) a minimum threshold voltage of about 2V at the contacts and 2) a bias field of about 1 MV/cm in the bulk. Changing contact material and polarity strongly affects the switching behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moller, S., Perlov, C., Jackson, W. B., Taussig, C. and Forrest, S. R., Nature 426 (2003) 166.Google Scholar
2. Crowley, M., Al-Shamma, A., Bosch, D., Farmwald, M., Fasoli, L., Iikabhar, A., Johnson, M., Kleveland, B., Lee, T., Liu, T.-Y., Nguyen, Q., Scheuerlein, R., So, K. and Thorp, T., 284 (2003), ISSCC Digest of Technical Papers (2003) 284.Google Scholar
3. Hawley, F., Assad, F., Ranaweera, J., Lambertson, R. and Mccollum, J., Mat. Res. Soc. Proc. 762 (2003) 699.Google Scholar
4. Lecomber, P. G., Owen, A. E., Spear, W. E., Hajto, J., Snell, A. J., Choi, W. K., Rose, M. J. and Reynolds, S., J. Non-Cryst. Solids 77–8 (1985) 1373.Google Scholar
5. Stradins, P., Jackson, W. B., Branz, H. M., Hu, J., Perkins, C. L. and Wang, Q., Mat. Res. Soc. Proc. 762 (2003) A2.4.Google Scholar
6. Jafar, M. and Haneman, D., Phys. Rev. B 49 (1994) 4605.Google Scholar
7. Hu, J., Branz, H. M., Crandall, R. S., Ward, S., Perkins, C. and Wang, Q., Mat. Res. Soc. Proc. 715 (2002) 763.Google Scholar
8. Wang, Q., Tessler, L. R., Moutinho, H., To, B., Perkins, J., Han, D., Ginley, D. and Branz, H. M., Mat. Res. Soc. Proc. 762 (2003) A9.1.Google Scholar
9. Fritzsche, H., In book: Semiconductors and Semimetals, Vol. 21C, Chapter 9, Academic Press, (1984)Google Scholar
10. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 1991).Google Scholar
11. Skhlovskii, B. I., Fritzsche, H. and Baranovskii, S., In book: Transport, Correlation and Structural Defects, Vol. 3, World Scientific, (1990) 161.Google Scholar