Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-21T08:44:46.506Z Has data issue: false hasContentIssue false

Three-State Lattice-Gas Model of H-S on Pt(111)

Published online by Cambridge University Press:  28 February 2011

Per Arne Rikvold
Affiliation:
Department of Physics, Florida State University, Tallahassee, FL 32306-3016
Joseph B. Collins
Affiliation:
Department of Physics and Center for Advanced Computational Science, Temple University, Philadelphia, PA 19122
G. D. Hansen
Affiliation:
ChemLink Industrial/Petroleum Chemicals Division, Malvem, PA 19355
J. D. Gunton
Affiliation:
Department of Physics and Center for Advanced Computational Science, Temple University, Philadelphia, PA 19122
E. T. Gawlinski
Affiliation:
Department of Physics and Center for Advanced Computational Science, Temple University, Philadelphia, PA 19122
Get access

Abstract

We consider a three-state lattice-gas with nearest-neighbor interactions on a triangular lattice as a model for multicomponent chemi- and physisorption. By varying the lateral interaction constants between the adsorbate particles, this model can be made to exhibit either enhanced adsorption or poisoning (inhibited adsorption). We discuss here the conditions on the interaction constants that lead to poisoning. We present the results of a ground-state calculation and detailed numerical study of the phase diagram for a set of interactions that exhibits poisoning. We calculate the phase diagrams and adsorption isotherms by the finite-size scaling transfer-matrix method. We consider the result as a simple model for the coadsorption of Sulphur and Hydrogen on a Platinum (111) surface, with interaction constants estimated from experimental data. The resulting adsorption isotherms are in good agreement with experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ertl, G., Langmuir 3, 4 (1987).CrossRefGoogle Scholar
[2] Freedman, L., in “Proceedings of the 44th International Water Conference”, Pittsburgh, Pennsylvania, October, 1983, p. 17. (Western Pennsylvania Engineering Society, Pittsburgh, 1984.); “Corrosion Control Through a Better Understanding of the Metallic Substrate / Organic Coating / Interface”, edited by H. Leidheiser. (Center for Surface Coatings Research, Lehigh University, Bethlehem, Pennsylvania, 1984.)Google Scholar
[3] Bonzel, H. P., J. Vac. Sci. Technol. A 2, 866 (1984)CrossRefGoogle Scholar
[4] Uram, K. J., Ng, L., and Yates, J. T. Jr, Surf. Sci. 177, 253 (1986).CrossRefGoogle Scholar
[5] Hoffmann, F. M., Hrbeek, J., and dePaola, R. A., Chem. Phys. Lett. 106, 83 (1984); R. A. dePaola, J. Hrbeek, and F. M. Hoffmann, J. Chem. Phys. 82, 2484 (1985); J. J. Weimer, E. Umbach, and D. Menzel, Surf. Sci. 155, 132 (1985).CrossRefGoogle Scholar
[6] Reynolds, A. E., Foord, J. S., and Tildesley, D. J., Surf. Sci. 166, 19 (1986); J. S. Foord and A. E. Reynolds, Surf. Sci. 152/153, 426 (1985).CrossRefGoogle Scholar
[7] Protopopoff, E. and Marcus, P., Surf. Sci. 169, L237 (1986).Google Scholar
[8] Pradier, C. M., Berthier, Y., and Oudar, J., Surf. Sci. 130, 229 (1983).CrossRefGoogle Scholar
[9] e.g., Rikvold, P. A., Kaski, K., Gunton, J. D., and Yalabik, M. C., Phys. Rev. B. 29, 6285 (1984), and references cited therein.CrossRefGoogle Scholar
[10] Beale, P. D., Phys Rev. B 33, 1717 (1986)Google Scholar
[11] Kinzel, W. and Schick, M., Phys. Rev. B 23, 3435 (1981)Google Scholar
[12] Bartelt, N. C., Einstein, T. L., and Roelofs, L. D., Phys. Rev. B 34, 1616 (1986); L. D. Roelofs, T. L. Einstein, N. C. Bartelt, and J. D. Shore, Surf. Sci. 176, 295 (1986)Google Scholar
[13] Collins, J. B., Rikvold, P. A., and Gawlinski, E. T., submitted to Phys. Rev. B.; P. A. Rikvold, J. B. Collins, G. D. Hansen, J. D. Gunton, submitted to Surface Science.Google Scholar
[14] Schardt, B. C., Stickney, J. L., Stem, D. A., Wieckowski, A., Zapien, D. C., and Hubbard, A. T., Surf. Sci. 175, 520 (1986).Google Scholar
[15] Muscat, J.-P., Phys. Rev. B 33, 8136 (1986).CrossRefGoogle Scholar
[16] Domany, E., Schick, M., Walker, J. S., and Griffiths, R. B., Phys. Rev. B 18, 2209 (1978); M. Schick, Prog. Surf. Sci. 11, 245 (1981)CrossRefGoogle Scholar
[17] Saito, Y., J. Chem. Phys. 74, 713 (1981)Google Scholar
[18] Baxter, R. J., J. Phys. A 13, L61 (1980)Google Scholar
[19] Dreyssee, H., Tomanek, D., Bennemann, K. H., Ber. Buns.-Ges. Phys. Chem. 90, 245 (1986).Google Scholar
[20] Lee, J., Cowin, J. P., and Wharton, L., Surf. Sci. 130, 1 (1983).Google Scholar
[21] Batra, I. P., Surf. Sci. 137, L97 (1984).Google Scholar
[22] Hayek, K., Glassl, H., Gutmann, A., Leonhard, H., Prutton, M., Tear, S. P., and Welton-Cook, M. R., Surf. Sci. 175, 535 (1986).Google Scholar
[23] Domb, C., Adv. Phys. 29 149 (1960)Google Scholar
[24] Nightingale, M. P., Physica A 83, 561 (1976); Phys. Lett. 59a, 486 (1977)CrossRefGoogle Scholar