Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T18:46:32.050Z Has data issue: false hasContentIssue false

Thin HfO2 Films Deposited via Alternating Pulses of Hf(NO3)4 and HfCl4

Published online by Cambridge University Press:  01 February 2011

J.F. Conley Jr
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA, 98607
Y. Ono
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA, 98607
R. Solanki
Affiliation:
Oregon Graduate Institute, Department of Electrical and Computer Engineering, Beaverton, OR
D.J. Tweet
Affiliation:
IC Process Technology Laboratory, Sharp Labs of America, Camas, WA, 98607
Get access

Abstract

A novel technique for deposition of metal oxide films is demonstrated in which alternating pulses of metal-nitrate and metal-chloride precursors are used. The metal nitrate, Hf(NO3)4, acts as the oxidizing agent, avoiding the use of a separate oxidizing species such as H2O. This method results in greater than one monolayer per cycle deposition rate of HfO2 films compared to the use of a single precursor and enables deposition directly on H-terminated Si due to the reactivity of Hf(NO3)4. It was found that performing a short in-situ anneal after every deposition cycle increases film density and improves electrical characteristics. Films are characterized via capacitance vs. voltage, current vs. voltage, spectroscopic ellipsometry, and x-ray diffraction and reflectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Copel, M., Gribelyuk, M., and Gusev, E., Appl. Phys. Lett. 76, 436 (2000).Google Scholar
2. Green, M.L., Ho, M.Y., Busch, B., Wilk, G.D., Sorsch, T., Conrad, T., Brijs, B., Vandervorst, W., Raisanen, P.I., Muller, D., Bude, M., and Grazul, J., J. Appl. Phys. 92 (12), 7168 (2002).Google Scholar
3. Ma, T., Campbell, S.A., Smith, R., Hoilien, N., Boyong, H., Gladfelter, W.L., Hobbs, C., Buchanan, D., Taylor, C., Gribelyuk, M., Tiner, M., Copel, M., Lee, J.J., IEEE Trans. Elec. Dev. 48, 2348 (2001).Google Scholar
4. Conley, J.F. Jr, Ono, Y., Zhuang, W., Tweet, D.J., Gao, W., Mohammed, S. K., and Solanki, R., Electrochem. and Sol. State Lett. 5 (5), C57 (2002).Google Scholar
5. Conley, J.F. Jr, Ono, Y., Tweet, D.J., Zhuang, W., Solanki, R., in Mat. Res. Soc. Proc. Vol. 716, pp. 7378, (2002).Google Scholar
6. Conley, J.F. Jr, Ono, Y., Tweet, D.J., Zhuang, W., and Solanki, R., J. Appl. Phys. 93 (1), 712 (2003).Google Scholar
7. Conley, J.F. Jr, Ono, Y., Solanki, R., Stecker, G., and Zhuang, W., Appl. Phys. Lett. 82 (2003).Google Scholar
8. Zhuang, W., Conley, J.F. Jr, Ono, Y., Evans, D.R., and Solanki, R., Integrated Ferro. 48, 312 (2002).Google Scholar
9. Ma, Y., Ono, Y., Stecker, L., Evans, D.R., and Hsu, S.T., IEDM Tech. Digest, p. 149 (1999).Google Scholar