Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T04:14:02.566Z Has data issue: false hasContentIssue false

Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature

Published online by Cambridge University Press:  10 February 2011

Kenji Yamamoto
Affiliation:
Central Research Laboratories, Kaneka Corporation, 2-80 Yoshida-cho, Hyogo-ku, Kobe 652, JAPAN
Masashi Yoshimi
Affiliation:
Central Research Laboratories, Kaneka Corporation, 2-80 Yoshida-cho, Hyogo-ku, Kobe 652, JAPAN
Takayuki Suzuki
Affiliation:
Central Research Laboratories, Kaneka Corporation, 2-80 Yoshida-cho, Hyogo-ku, Kobe 652, JAPAN
Yuko Tawada
Affiliation:
Central Research Laboratories, Kaneka Corporation, 2-80 Yoshida-cho, Hyogo-ku, Kobe 652, JAPAN
Yoshifumi Okamoto
Affiliation:
Central Research Laboratories, Kaneka Corporation, 2-80 Yoshida-cho, Hyogo-ku, Kobe 652, JAPAN
Akihiko Nakajima
Affiliation:
Central Research Laboratories, Kaneka Corporation, 2-80 Yoshida-cho, Hyogo-ku, Kobe 652, JAPAN
Get access

Abstract

The performances of thin film poly-Si solar cells with a thickness of less than 5 μm on a glass substrate have been investigated. The cell of glass / back reflector / n-i-p type Si / ITO is well characterized by the structure of naturally _surface texture and enhanced absorption with a back reflector (STAR), where the active i-type poly-Si layer was fabricated by plasma chemical vapor deposition (CVD) at low temperature. The cell with a thickness of 2.0 μm demonstrated an intrinsic efficiency of 10.7% (aperture 10.1%), the open circuit voltage of 0.539 V and the short current density of 25.8 mA/cm2 as independently confirmed by Japan Quality Assurance. The optical confinement effect explains the excellent spectral response at long wavelength for our cells through the PCID analysis. The higher sensitivity at long-wavelength of our cell appeared in quantum efficiency curves is well correlated to the result of reflectance measurement. The efficiency of 9.3% cell with a thickness of 1.5 pm was proved to be entirely stable with respect to the lightsoaking. Based on the result of various evaluation of diffusion length, it is postulated that the low temperature poly-Si prepared by plasma CVD gives a device quality of poly-Si film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yamamoto, K., Nakajima, A., Suzuki, T., Yoshimi, M., Nishio, H. and Izumina, M.: Jpn. J. Appl. Phys. 33 (1994) L1751.Google Scholar
2 Yamamoto, K., Nakajima, A., Suzuki, T., Yoshimi, M., Nishio, H. and Izumina, M.: Pro. of 1st World Con. Photovoltaic Energy Conversion, 1994 (IEEE Inc, Piscataway, 1994)p. 1573.Google Scholar
3 Nakajima, A., Suzuki, T., Yoshimi, M. and Yamamoto, K.: Proc. 13th European Photovoltaic Solar Energy Conf., 1995 (H.S.Stephens & Associates, U.K., 1995) p. 1550.Google Scholar
4 Yamamoto, K., Suzuki, T., Yoshimi, M. and Nakajima, A.: Proc. of 25th IEEE Photovoltaic Energy Conversion, 1996 (IEEE Inc, Piscataway, 1996) p. 661.Google Scholar
5 Bergmann, R., kuhnle, J. and Werner, J.H.: First Word Conf. Photovoltaic Energy Conversion, 1994 (IEEE Inc, Piscataway, 1994) p. 1398.Google Scholar
6 Meier, J., Flueckiger, R., Keppner, H. and Shah, A., Appl. Phys. Lett. 65, (1994) p. 860.Google Scholar
7 Fischer, D., Dubail, S., Selvan, J., Vaucher, N., Platz, R., Hof, C., Kroll, U., Meier, J., Torres, P., Keppner, H., Wyrsch, N., Goetz, M. and Shah, A., et al, Proc. of 25th IEEE Photovoltaic Energy Conversion, 1996 (IEEE Inc, Piscataway, 1996) p. 1053.Google Scholar
8 Matuyama, T., Baba, T., Takahama, T., Tsuda, S. and Nakano, S.: Solar Energy Mater. & Solar Cells 34 (1994) 257.Google Scholar
9 Cotter, J. E., Barnett, A.M., Ford, D.H., Goetz, M.A., Hall, R.B., Ingram, A.E., Rand, J.A., and Thomas, C.J.: Proc. 13th European Photovoltaic Solar Energy Conf., 1995 (H.S.Stephens & Associates, U.K., 1995) p.1732.Google Scholar
10 Brendel, R., Bergmann, R., Lolgen, P., Wolf, M, and Werner, J., Appl. Phys. Lett. 70(1997)390 Google Scholar
11 Yamamoto, K., Nakajima, A., Suzuki, T. and Yoshimi, M., Jpn. J. Appl. Phys. 36(1997)L569 Google Scholar
12 Yamamoto, K., Nakajima, A., Suzuki, T. and Yoshimi, M., Proc. 14h European Photovoltaic Solar Energy Conf., 1997 Google Scholar
13 Yamamoto, K., Suzuki, T., Kondo, K., Okamoto, T., Yamaguchi, M., Izumina, M. and Tawada, Y.: Solar Energy Mater. & Solar Cells 34 (1994) 501.Google Scholar
14 not publishedGoogle Scholar
15 Yamamoto, K., Suzuki, T., Yoshimi, M. and Nakajima, A., Proc. 14th European Photovoltaic Solar Energy Conf., 1997 p. 1018.Google Scholar
16 Yamamoto, K., Suzuki, T., Yoshimi, M. and Nakajima, A.: Proc. of 26th IEEE Photovoltaic Energy Conversion, 1996 (IEEE Inc, Piscataway, 1998) p.575.Google Scholar
17 Poruba, A. et al, Proc. 14th European Photovoltaic Solar Energy Conf., 1997 p.2105.Google Scholar
18 Basore, P. A.: IEEE Trans. Elect. Devices, ED–37 (1990) p. 337.Google Scholar
19 Rand, J. A. and Basore, P.A.: Proc. 22nd IEEE Photovoltaic Energy Conversion, 1991 (IEEE Inc, Piscataway, 1991) p. 192.Google Scholar