Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T14:48:20.247Z Has data issue: false hasContentIssue false

Thin A-SiOxHyAlloy Films Showing Visible Luminescence Prepared by DC-Magnetron Sputtering with Water Vapor as Oxygen Source

Published online by Cambridge University Press:  01 January 1993

M. Zacharias
Affiliation:
Inst. Exper. Physik,Tech. Univ. "Otto von Guericke", O-3010 Magdeburg , Germany
B. Garke
Affiliation:
Inst. Exper. Physik,Tech. Univ. "Otto von Guericke", O-3010 Magdeburg , Germany
A. Panckow
Affiliation:
Inst. Exper. Physik,Tech. Univ. "Otto von Guericke", O-3010 Magdeburg , Germany
H. Freistedt
Affiliation:
Inst. Exper. Physik,Tech. Univ. "Otto von Guericke", O-3010 Magdeburg , Germany
T. DrÜSedau
Affiliation:
Inst. Exper. Physik,Tech. Univ. "Otto von Guericke", O-3010 Magdeburg , Germany Feodor Lynen-Fellow of the Alexander von Humboldt - Fundation, Harvard University, Division of Applied Sciences, Cambridge, MA 02138
Get access

Abstract

Thin films of non stochiometric hydrogenated amorphous silicon oxide (a-SiOxHy.) with x=0.09...1.14, y=0.06...0.20 were prepared by dc-magnetron sputtering from a crystalline silicon target within an argon-hydrogen-water vapor atmosphere. The film properties were investigated by infrared and optical spectroscopy, Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD), luminescence and activated conductivity. Absorption bands related to either silicon-hydrogen or silicon-oxygen vibration modes were observed at 650, 800, 870 and 1000cm-1. Above a water pressure of 0.06Pa, the oxygen content saturates at about 50 at %. The static refractive index n ∞ the optical Tauc gap ETand the logarithmic dark conductivity at room temperature show a linear dependence on the films' oxygen content. Films prepared under certain conditions show visible photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singh, A., Davis, E. A. and Bayliss, S. C., (1989).Google Scholar
2. Wang, C., Parsons, G. N. and Lucovsky, G. in Amorphous Silicon Technology, edited by Madan, A., Thompson, M. J., Taylor, P. C., Hamakawa, Y. and LeComber, P. G. (Mat. Res. Soc. Proc. 149, Pittsburgh, PA, 1989) pp. 7580.Google Scholar
3. Zacharias, M., Drüsedau, T., Panckow, A., Freistedt, H. and Garke, B., unpublished .Google Scholar
4. Brandt, M. S., Fuchs, H. D., Stutzmann, M. S., Weber, J. and Cardona, M., 81, 307 (1992).Google Scholar
5. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
6. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
7. Drüsedau, T., J. Non-Cryst. Solids 135,204 (1991).Google Scholar
8. Drüsedau, T., Eckler, M. and Bindemann, R., phys. stat. sol. (b) 108, 285 (1988).Google Scholar
9. Lucovsky, G., Yang, J., Chao, S. S., Tyler, J. E. and Czubatyi, W., Phys. Rev. B 28, 3225 (1983).Google Scholar
10. Cardona, M., phys. stat. sol. (b) 118,463 (1983).Google Scholar
11. Stolze, F., Zacharias, M., Garke, B. and Schippel, S., unpublished .Google Scholar
12. Wemple, S. H., Phys. Rev. B 7, 3767 (1973).Google Scholar
13. Stutzmann, M., unpublished .Google Scholar
14. Kanemitsu, Y., Uto, H., Masemuto, Y. and Maeda, Y., Appl. Phys. Lett. 61, 2187 (1992).Google Scholar