Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-20T12:30:50.388Z Has data issue: false hasContentIssue false

Thermoelectric Properties of the Half-Heusler Compound (Zr,Hf)(Ni,Pd)Sn

Published online by Cambridge University Press:  10 February 2011

V. M. Browning
Affiliation:
Naval Research Laboratory, Washington, DC 20375
S. J. Poon
Affiliation:
University of Virginia, Charlottesville, VA 22904
T. M. Tritt
Affiliation:
Clemson University, Clemson, SC 29634
A. L Pope
Affiliation:
Clemson University, Clemson, SC 29634
S. Bhattacharya
Affiliation:
Clemson University, Clemson, SC 29634
P. Volkov
Affiliation:
University of Virginia, Charlottesville, VA 22904
J. G. Song
Affiliation:
University of Virginia, Charlottesville, VA 22904
V. Ponnambalam
Affiliation:
University of Virginia, Charlottesville, VA 22904
A. C. Ehrlicha
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Recent measurements of the thermoelectric transport properties of a series of the half- Heusler compound ZrNiSn are presented. These materials are known to be bandgap intermetallic compounds with relatively large Seebeck coefficients and semimetallic to semiconducting transport properties. This makes them attractive for study as potential candidates for thermoelectric applications. In this study, trends in the thermoelectric power, electrical conductivity and thermal conductivity are examined as a function of chemical substitution on the various fcc sub-lattices that comprise the half-Heusler crystal structure. These results suggest that the lattice contribution to the thermal conductivity may be reduced by increasing the phonon scattering via chemical substitution. The effects of these substitutions on the overall power factor and figure-of-merit will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aliev, F. G., Brandt, N. B., Moshchalkov, V. V., Kozyrkov, V. V., Skolozdra, R. V., and Belogorokhov, A. I, Z. Phys. B 75, 167 (1989).CrossRefGoogle Scholar
2. Aliev, F. G., Physica B 171, 199 (1991).CrossRefGoogle Scholar
3. Cook, B. A., Harringa, J. L., Tan, Z. S., and Jesser, W. A. in Proceedings XV International Conference on Thermoelectrics, (IEEE Cat. No. 96TH8169, New York, 1996), p. 122.Google Scholar
4. Jeitschko, W., Metall. Trans. 1, 3159 (1970).CrossRefGoogle Scholar
5. Palstra, T. T. M., Nieuwenhus, G. J., Vlastuin, R. M. F., Mydosh, J. A., van den Berg, J. and Bushow, K. H. J., J. Magn. & Magn. Mater. 67, 331 (1987).CrossRefGoogle Scholar
6. Aliev, F. G., Brandt, N. B., Kozyrkov, V. V., Moshchalkov, V. V., Scolozdra, R. V. and Stadnik, Yu. V., Fiz. Nizk. Temp. 12, 498 (1987).Google Scholar
7. Klemens, P. G. in Proc. Phys. Soc. (London) A 68, 1113 (1955).Google Scholar
8. Uher, C., Yang, J., Hu, S., Morelli, D. T., and Meisner, G. P., (submitted to Phys. Rev. B).Google Scholar
9. Uher, C., Hu, S., Yang, J., Meisner, G. P., and Morelli, D. T., in Proc. XVI Int. Conf On Thermoelectrics (in press).Google Scholar
10. Browning, V.M. (unpublished results).Google Scholar
11. Aliev, F. G., Brandt, N. B., Kozyrkov, V. V., Moshchalkov, V. V.. Scolozdra, R. V., Stadnyk, Yu. V., and Pecharskii, V. V., Pis'ma v Zh. Eksp. Teor. Fiz. 45, 535 (1987).Google Scholar
12. Buist, R. J. in CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (CRC Press, Boca Raton, 1995) p. 143.Google Scholar
13. Ögut, S. and Rabe, K. M., Phys. Rev. B 51, 10443 (1995).CrossRefGoogle Scholar
14. Hannssen, K. E. H. M. and Mijnarends, P. E., Phys. Rev. B 34, 5009 (1986).Google Scholar